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Programming language mechanisms with a type-directed semantics are nowadays common and widely

used. Such mechanisms include gradual typing, type classes, implicits and intersection types with a merge
operator. While sharing common challenges in their design and having complementary strengths, type-directed

mechanisms have been mostly independently studied.

This paper studies a new calculus, called λM⋆
, which combines two type-directed mechanisms: gradual

typing and a merge operator based on intersection types. Gradual typing enables a smooth transition between

dynamically and statically typed code, and is available in languages such as TypeScript or Flow. The merge

operator generalizes record concatenation to allow merges of values of any two types. Recent work has

shown that the merge operator enables modelling expressive OOP features like first-class traits/classes and
dynamic inheritance with static type-checking. These features are not found in mainstream statically typed

OOP languages, but they can be found in dynamically or gradually typed languages such as JavaScript or

TypeScript. In λM⋆
, by exploiting the complementary strengths of gradual typing and the merge operator,

we obtain a foundation for modelling gradually typed languages with both first-class classes and dynamic

inheritance. We study a static variant of λM⋆
(called λM); prove the type-soundness of λM⋆

; show that λM⋆

can encode gradual rows and all well-typed terms in theGTFL≲ calculus; and show that λM⋆
satisfies gradual

typing criteria. The dynamic gradual guarantee (DGG) is challenging due to the possibility of ambiguity

errors. We establish a variant of the DGG using a semantic notion of precision based on a step-indexed logical

relation.
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1 Introduction
Programming language mechanisms with a type-directed semantics are nowadays widely used.

Such mechanisms include gradual typing [Siek and Taha 2006; Tobin-Hochstadt and Felleisen 2006],

type classes [Wadler and Blott 1989], implicits [Oliveira et al. 2010] and intersection types with a

merge operator [Dunfield 2014; Reynolds 1997]. In all those mechanisms the semantics of a program

may depend on the types assigned to the program. In other words, changing some type in the

program (without changing anything else) may change the semantics of the program. Programming
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languages such as Haskell (via type classes), Scala (via implicits), gradually typed languages or

even Java (via static overloading) all include language mechanisms with a type-directed semantics.

While sharing common challenges in their design and having complementary strengths, type-

directed mechanisms have been mostly independently studied. In this paper we focus on integrating

two type-directed mechanisms: gradual typing and the merge operator in calculi with intersection

types. Gradual typing enables a gradual transition between dynamically and statically typed code,

and is nowadays available in languages such as TypeScript and Flow (which are supersets of

JavaScript). The merge operator generalizes record concatenation to allow merges of values of any

two types. Recent work [Bi and Oliveira 2018; Zhang et al. 2021] showed that the merge operator

can model expressive OOP features like first-class traits/classes [Takikawa et al. 2012] and dynamic
inheritance [Ernst 2000] with static type-checking. Such features are not found in mainstream

statically typed OOP languages, but they are found in dynamic languages such as JavaScript.

Due to its practical importance, there has been much research in past years on gradual typing.

Nonetheless, much of the focus of research on gradual typing has been on gradualizing common

statically-typed calculi that do not have a type-directed semantics. Within this line of work, Siek and

Taha [2007] initiated a line of work exploring minimal gradually typed calculi for modelling objects,

based on an object calculus by Abadi and Cardelli [1996]. Siek and Taha’s calculus is relatively

limited in that it only supports objects with a fixed number of fields/methods. More recently, gradual

variants of record calculi, such as the GTFL≲ calculus, have been proposed [Bañados Schwerter

et al. 2021; Garcia et al. 2016]. Similarly to Siek’s work, theGTFL≲ calculus only supports fixed-size
records. The restrictions in those calculi mean that there is still a large gap to the features that

are available in JavaScript. In particular the lack of extensible objects/records prevents modelling

(dynamic)multiple inheritance andmore expressive OOPmechanisms that are available in languages

such as JavaScript. A notable reference in this space is Takikawa et al. [2012] work, which has

addressed the integration of gradual typing and first-class classes. However, this integration is at

the module level, allowing dynamically typed and statically typed modules to interoperate.

Calculi with extensible records provide a natural foundation for languages with inheritance,

which can be modelled by record concatenation [Cook and Palsberg 1989; Wand 1989]. Unfortu-

nately, as identified by Cardelli and Mitchell [1991], there are important challenges to develop a

typed language with both record concatenation and subtyping. Calculi with the merge operator and

disjoint intersection types [Oliveira et al. 2016] overcome such challenges with a type-directed

semantics. Recently, Huang et al. [2021] proposed a type-directed operational semantics (TDOS)

approach for such calculi. The TDOS approach allows giving a direct operational semantics to

calculi with the merge operator. Furthermore the TDOS approach is not tied to calculi with the

merge operator, and can be used to model the semantics of other type-directed mechanisms as well.

In particular, it has been adapted by Ye et al. [2021] to gradual typing. However, so far there is no

calculus including both the merge operator and gradual typing.

This paper studies a new calculus, called λM⋆
, combining gradual typing and a merge operator

based on intersection types. With λM⋆
, we obtain a foundation for modelling gradually typed

languages with expressive OOP features, such as first-class classes and dynamic inheritance in

a purely functional setting with records. There is still a gap between our work, and mainstream

languages like JavaScript and TypeScript, since we do not consider imperative features, such as

references and object identity. Nevertheless, we address fundamental questions that arise from the

interaction between dynamic inheritance and method overriding. Without care, such interaction

can easily lead to type unsoundness, as shown in Section 2.3 using TypeScript. Furthermore, with

gradual typing, this interaction is further complicated by the possibility of runtime ambiguity

errors. We make the following contributions in this paper:
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• We show how to combine two type-directed mechanisms (gradual typing and the
merge operator) into a single language. This sheds new insights such as how to integrate

multiple type-directed mechanisms, and how to design casting relations for the dynamic

semantics.

• The λM and the λM⋆ calculi.We present the λM⋆
calculus as a concrete language design

integrating gradual typing and the merge operator using a TDOS. The static counterpart is a

variant of a calculus with a merge operator called λM. We prove several results for λM and

λM⋆
, including type soundness, determinism and the gradual guarantee for λM⋆

.

• Anew solution to the problemofmodular type invariants for gradual rows identified
by Bañados Schwerter et al. [2021]. λM⋆

provides a solution (inherited from previous calculi

with amerge operator [Huang et al. 2021]) to preserve suchmodular type invariants. Moreover

we relate the problem to a problem that was identified 30 years earlier by Cardelli and Mitchell

[1991] for record calculi with subtyping.

• An encoding of gradual rows and theGTFL≲ calculus in λM⋆
. Compared to theGTFL≲

calculus, λM⋆
does not need a special type for gradual rows, and supports extensible records.

• Prototype, Coq proofs and a proof of the dynamic gradual guarantee. All the calculi
and proofs in this paper are mechanically formalized in Coq, with the exception of dynamic

gradual guarantee, which employs a step-indexed logical relation and is manually proved. We

also offer an interactive prototype implementation of λM⋆
(including some simple extensions).

Both the formalization, proofs and implementation are available in the artifact [Ye et al. 2024].

2 Overview
We start with an overview of the merge operator and gradual typing, motivate the combination of

the two features, and give an overview of our work and the λM and λM⋆
calculi.

2.1 Background: Gradual Typing
Gradual typing [Siek and Taha 2006; Tobin-Hochstadt and Felleisen 2006] enables programs to

range from dynamic typing to static typing. To defer static type checks to runtime, gradual typing

employs the unknown type ⋆ and consistency relations. The unknown type ⋆ is consistent with
any type. Dynamic type errors are triggered by casts. The implicit casts in gradual typing have a

type-directed semantics: the semantics of programs depends on the types used in the casts. For

example, in the simple expression 1 : ⋆ : Bool casting 1 to type Bool will result in blame (i.e. a
runtime type error). However, if we have 1 : ⋆ : Int instead, we obtain the integer 1 after running the
program. Thus, the types used by casts can give rise to different evaluation results. Note that in the

previous examples (and the examples that follow), we adopt a notation similar to type annotations

to denote casts. For instance, in the expression 1 : ⋆ : Bool there are two casts: a first cast from Int
(the type of 1) to ⋆; and a second cast from ⋆ to Bool. We choose the use of this notation throughout

the paper to be consistent with the notation in the λM and λM⋆
calculi.

Typed-Directed Operational Semantics (TDOS). Traditionally the semantics of gradual languages

is given by an elaboration to an intermediate (cast) calculus [Siek and Taha 2006]. Ye et al. [2021]

proposed an alternative approach to give the semantics of gradually typed calculi that avoids an

elaboration. The approach is based on typed-directed operational semantics (TDOS): a variant of

small-step semantics first proposed by Huang and Oliveira [2020]. A TDOS uses type annotations

to determine the result of reduction at run-time. TDOS contains two main components. One is a

traditional reduction relation with a few adjustments. The other one is a typed reduction relation

v ↪→A v ′, which we call casting in our work. The casting relation takes a value and a type as the

input and produces a value matching the shape of input type. Ye et al. [2021] applied the TDOS to
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gradual typing successfully to two different gradually typed calculi. For gradual typing, the casting

relation generalizes the result of casting (v ↪→A r) to a result r, which contains not only values

but also run-time errors (err∗). Compared to the elaboration approach, a benefit of the TDOS is

that the dynamic semantics is defined directly for the gradually typed source language.

2.2 Background: The Merge Operator
Some calculi with intersection types employ a special operator, called the merge operator [Dunfield
2014; Reynolds 1997], that allows building values that can have multiple types. For example, in the

following program, x has both an integer and a boolean value and has the type Int&Bool:

let x = 1 , , True in (x + 1, not x)

x is built using the merge operator ( , , ). When x is used, it can act as either an integer or a boolean.

In calculi with a merge operator multi-field records are merges of single field records. As Dunfield

noticed, the merge operator can encode various other programming language features, including

extensible records, dynamic typing and operator overloading. Recent research has further shown

programming language designs, such as SEDEL [Bi and Oliveira 2018] or CP [Zhang et al. 2021],

based on variants of the merge operator. These designs enable applications such as first-class

classes/traits [Bi and Oliveira 2018] and Compositional Programming [Zhang et al. 2021].

Type-directed Semantics of Merges and the Interaction with Subtyping. The semantics of the merge

operator is type-directed: components are extracted frommerges based on types. For instance, in the

expression x + 1 above, the type Int is required by +. Therefore 1 should be extracted from x. While

convenient, the type-directed extraction of values can lead to ambiguity. Consider (1 , , 2) : Int.
This program is ambiguous because the result can be either 1 or 2. Moreover, the interaction

between subtyping and the merge operator is subtle [Dunfield 2014; Huang et al. 2021]. A closely

related problem was identified by Cardelli and Mitchell [1991], for calculi with subtyping and record
concatenation (a special case of the general merge operator). We illustrate the issue with an example

based on Cardelli and Mitchell’s work:

let x : {l2 : Bool} = {l1 = "Boom!"} , , {l2 = True} in ({l1 = 2} , , x).l1 + 3

Variable x has type {l2 : Bool}. The value for x includes a field l1, which is hidden due to subtyping.

The merge {l1 = 2}, , x, appears to be safe statically (since statically x does not contain l1). However,
what should happen when we do the field lookup? If the original field l1 is preserved in x then,

when we lookup l1, there will be two l1 fields. Naive biased lookups are problematic. For instance,

in the program above, if a right-biased lookup is used, then the program would extract the string

"Boom!" and try to add that to an integer, which would crash the program. In other words a naive

biased lookup for merges in the presence of subtyping is not type-sound. Even if the two values

of the field l1 have the same type, extracting the value of the hidden field may lead to surprising

behaviour to programmers, since the type of x appears to promise that no field l1 is present. For
these reasons Cardelli and Mitchell argued that biased lookups should not be used.

Disjoint Intersection Types. To address the ambiguity problems, as well as the problems arising

from the interactions between merges and subtyping, Oliveira et al. [2016] proposed to have

a restriction where only merges of disjoint types are accepted. Disjointness rejects ambiguous

programs such as True , , False or 1 , , 2, since the types of the two values being merged are not

disjoint. Similarly to gradual typing (as discussed in Section 2.1), the semantics for languages with

the merge operator can also be given using a TDOS approach [Huang and Oliveira 2020; Huang

et al. 2021]. Huang et al. proposed λi: a calculus with a merge operator and disjoint intersection

types. λi solves the ambiguity of issues of the merge operator with disjointness and a TDOS. We
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illustrate how λi’s TDOS solves the problem next:

(λx. ((x , , 1) + 1) : Bool → Int) (True , , 2) ↪→∗ ((True , , 1) + 1) : Int ↪→∗ 2

If we just substitute True , , 2 with a normal beta reduction, a non-disjoint expression would be

generated after substitution (True , , 2 , , 1). Instead, True is extracted by casting True , , 2 under
the function input type Bool. Thus the value that gets substituted in the body of the lambda is True
instead of True , , 2. This enables the program to reduce without encountering ambiguities in the

merges. Coming back to the example with records:

let x : {l2 : Bool} = {l1 = "Boom!"} , , {l2 = True} in ({l1 = 2} , , x).l1+3

What λi (extended with records) does is to drop the field l1 in x when the value is upcast to have

the type {l2 : Bool}. Therefore, ({l1 = 2} , , x).l1 would become ({l1 = 2} , , {l2 = True}).l1 and the

final result of the program would be 5. In other words, the solution of λi to the problem of the

interaction between merges and subtyping is to ensure that values in a merge that are hidden by

subtyping are dropped from the value when (up)casting.

2.3 Motivation: Combining Merges and Gradual Typing
While TDOS has been applied to both gradual typing and calculi with the merge operator separately,

there is no calculus that supports both gradual typing and the merge operator. However there are

compelling reasons to develop calculi supporting both features, which we discuss next.

Modelling Expressive Dynamic OOP features. Most mainstream implementations of gradually

typed languages target languages such as JavaScript. While in gradual typing research has focused

on gradualizing a variety of common type systems, there is much less effort on type systems that

model highly dynamic OOP features. Yet, since languages like JavaScript are actually the most

common practical focus on mainstream gradually typed language implementations (like TypeScript

or Flow), this leaves open the question of how to design and implement type systems that support

such features. Since one of the use-modes of gradual typing is full static typing, it is desirable to

support (static) type systems that enable type-checking for (some of) the advanced OOP features of

dynamic languages such as JavaScript.

For example, JavaScript supports first-class classes [Takikawa et al. 2012], and dynamic inheri-
tance [Ernst 2000]. First-class classes are first-class values (just like lambdas in functional program-

ming), and can be passed as arguments or returned as results. Dynamic inheritance means that the

inherited classes are not statically known (they can be parametrized, for instance). With first-class

classes and dynamic inheritance, the programmer can abstract over patterns in the hierarchy of

classes and model mixins [Bracha and Cook 1990]. In JavaScript a mixin is as a function that takes

a superclass as input and returns a subclass that extends the superclass. For example:

const circleMixin = shape ⇒ {

return class extends shape { area(radius) { return PI * radius * radius; } }

};

In this JavaScript code, circleMixin extends shape with a method to calculate the area of a circle.

The super class shape is a function parameter, which means that circleMixin can be extended by

any shape class at runtime. In a conventional statically-typed class-based language such as Java,

such parametrization by a superclass is not possible, due to restrictions of the type system.

A Type Unsound Approach to First-Class Classes in TypeScript. TypeScript supports conventional
static inheritance idioms and its type system prevents type-unsafe overrides (similarly to Java or
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class A {

m() : number {return 5};

n() : number {return this.m() - 4;} }

interface C {n() : number}
type GConstructor<T = {}> = new (...args: any[]) ⇒ T;

function mkB<TBase extends GConstructor<C>>(Base: TBase) {

return class B extends Base {

m() : string {return "hello";} // If m exists in Base it will be overriden

};

}

const cl = mkB(A); // Problem: Superclass already contains an m

const o = new cl;

console.log(o.n());

Fig. 1. Type unsoundness of first-class classes in TypeScript.

C#). In addition, TypeScript also supports first-class classes and dynamic inheritance
1
. However,

as we shall illustrate next, the fact that with dynamic inheritance we do not have the exact type

information for superclasses is problematic and leads to type unsoundness (without relying on

dynamic types). For instance consider the TypeScript program in Figure 1. In this program, we

create a class A with m and n methods, which return integers. Importantly, n is defined in terms of m.

Then mkB is parametrized by a class Base, which is used as the superclass of B. We can specify the

interface of the superclass as being C, which only contains a method n. Note that B defines another

method m, which returns a string. TypeScript checks that there are no conflicts between m and the

methods in the superclass interface C. We then create an object o using A as the superclass for B (via

mkB). Unfortunately, the m that is present in B overrides the m from A. Then when we run n we end up

subtracting an integer from a string, which results in a runtime type error (TypeScript/JavaScript

actually tries to convert the string to a number and we get NaN instead).

In short, the TypeScript approach to deal with first-class classes is type unsound. The reason
for unsoundness is mkB(A). A is a subtype of C with an extra m() : number field, but when type-

checking B we do not know about the extra members (m() : number) of the subtype. Thus the
type system of TypeScript fails to detect the problematic override. This problem is a manifestation

of the problem identified by Cardelli and Mitchell [1991] discussed in the Section 2.2. Note also that

in languages with static inheritance and top-level classes only (such as Java or C#) there is no such

flexibility and the issue above does not arise. The problem is more pervasive with the dynamic

type, where we may be able to inherit from a supertype with an unknown interface, but then we

cannot statically prevent overrides since there is no information at all about the supertype.

First-class Traits and Dynamic Inheritance with Merges. Calculi and languages with the merge

operator can model mechanisms such as first-class classes. For instance, in the CP language [Zhang

et al. 2021], we can rewrite the circle mixin as:

type Shape = { name : String }

circle (super: Trait<Shape>) =

trait inherits super ⇒ { area radius = PI * radius * radius; };

1
https://www.typescriptlang.org/docs/handbook/mixins.html
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The CP language supports a form of first-class traits [Bi and Oliveira 2018] (which are analogous

to classes), and supports dynamic inheritance like JavaScript. However, unlike JavaScript, CP is

statically typed. In the program above, the trait being inherited is parametrized. For simplicity,

in the code above we assume that the interface of the trait being inherited is Shape, but CP also

supports dynamic inheritance even when the interface of the superclass is not fully know using

disjoint polymorphism [Alpuim et al. 2017]. Section 2.4 gives a brief overview of how the encoding

of first-class classes in CP in terms of merges works. We also show how the semantics of casting

and merges together with disjointness solve the problem in Figure 1, and enable type-sound and

expressive designs of languages with first-class classes. We refer the reader interested in more

advanced features of CP and the full details of how CP elaborates first-class traits and dynamic

inheritance to a calculus with a merge operator to the work by Bi and Oliveira [2018] and Zhang

et al. [2021].

In this work we propose to combine the merge operator with gradual typing. Thus we envision

a language like CP, supporting gradual typing. In such language, we could have a variation of the

program above that combines first-class traits, dynamic inheritance and gradual typing:

circle (super: Trait<⋆>) = trait inherits super ⇒ {

area (radius : ⋆) : number = PI * radius * radius;

};

In the program above, we mix static and dynamic typing. There are two noteworthy points. Firstly,

we make the type of radius dynamic (or unknown), and implicitly cast radius from ⋆ to a number.

Secondly, and more interestingly, the inherited trait has an unknown interface. We cannot rule out

conflicts statically, like in CP, because there is no static type information about the interface of

the supertype. Therefore, how can we deal with possible method conflicts? For instance, what if

the super class/trait has an area method, taking one argument, already? Adopting an overriding

semantics would be prone to issues similar to those identified by Cardelli and Mitchell. So, instead,

we propose to detect ambiguity at runtime: if the superclass contains a conflicting method, then a

runtime error may be raised to indicate ambiguity. By allowing programs like the above, we can

have a language, which supports very dynamic OOP features similar to those in JavaScript, while

at the same time supporting gradual typing.

Unified Foundation for Type-Directed Mechanisms. A second reason to have a unified framework

for type-directed mechanisms is that it is beneficial to avoid duplication of efforts in addressing com-

mon problems. For example, performant sound gradual typing is currently a hot topic [Greenman

2023; Greenman et al. 2019; Kuhlenschmidt et al. 2019; Muehlboeck and Tate 2017, 2021; Takikawa

et al. 2016], since there is a high cost imposed by casting. Because calculi with the merge operator

have casting, this is an issue for such calculi as well. Thus, leveraging on the developments for

gradually typed languages is helpful to address similar problems in calculi with merges. In the

current work we do not address the important issue of performance. However, we hope to leverage

on the existing work on gradual typing in the future to improve the performance in calculi with the

merge operator. Section 7 briefly sketches some possible directions for performance improvements.

Furthermore, designs for the semantics of calculi with the merge operator can also lead to new

developments that are useful for gradual typing. For instance, the TDOS approach to gradual typing

originated from developments in the semantics of languages with the merge operator.

2.4 Key Ideas and Challenges
In this paper we propose two new calculi. The λM calculus is a statically typed calculus, which is

a variant of the λi calculus with the merge operator and disjoint intersection types. We created
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λM because, to integrate gradual typing with the merge operator more easily, we need to modify

some details of the semantics. In particular λM has a different form of values and a lazy semantics

for higher-order values [Wadler and Findler 2009] that is not present in λi. A side-benefit of the

changes in λM is that it leads to a standard type preservation theorem, whereas in λi the reduction
increases the precision of types and preservation has to be relaxed. The λM⋆

calculus is a gradual

version of the λM calculus, and adds the unknown type ⋆ to λM. The addition of ⋆ to the calculus

is nontrivial and leads to several changes in the semantics and the metatheory. We describe some

of the key ideas next. The details are presented in Sections 3, 4 and 5.

Gradual Disjointness. In λi disjointness of types implies that Int is disjoint with Bool, but Int is
not disjoint with Int or Int&Bool. Disjointness has a simple specification: two types are disjoint if

they have no common supertypes, except for top-like types. Top-like types include ⊤ itself and

types isomorphic to ⊤, such as ⊤&⊤. When using a simple subtyping relation with intersection

types, this definition of disjointness means that two function types are never disjoint: we can

always find common supertypes that are not top-like for any two functions [Oliveira et al. 2016].

Oliveira et al. shows some alternatives to allow functions to be disjoint. However, for simplicity

here, we adopt the simpler formulation by Oliveira et al. where functions cannot be disjoint.

When adding ⋆ to a calculus with disjointness, an interesting question is: How should ⋆ behave
with respect to disjointness? To define gradual disjointness, we use the existential lifting of the

static relation from the Abstracting Gradual Typing (AGT) approach [Garcia et al. 2016]. With an

existential lifting we know that ⋆ is disjoint with A, if there exists some disjoint pair of static types

more precise than ⋆ and A. As ⊤ is more precise than ⋆, and ⊤ is disjoint with any other type, then

this means that ⋆ is disjoint to any other type.

Ambiguity Errors and Type Errors. As expected, if we consider imprecise types, we need to

check at runtime if disjointness is violated. For instance, (1 : ⋆ , , 2 : ⋆) : Int reduces to an error

(Int is a possible supertype of ⋆). Otherwise the reduction would be non-deterministic: we could

choose any of the two integers. Now consider the reduction of (True : ⋆ , , 1 : ⋆) : Int. First,
as both components of the merge operator are suitable for casting, we cast both components to

Int: True : ⋆ ↪→Int err and 1 : ⋆ ↪→Int 1. Then as the left component reduces to an error, we

keep the right component and reduce the whole expression to 1. This approach is motivated by

the fact that Bool& Int is a subtype of Int. Therefore, by the type safety property of the static

type discipline, a program such as (True , , 1) : Int does not fail, using similar reasoning. Now

consider the expression ((1 : ⋆ , , 2 : ⋆) : ⋆ , , 3) : Int. We would like this expression to reduce to

an error. However, the approach that we have adopted so far does not work. Let’s see why. First,

(1 : ⋆ , , 2 : ⋆) : ⋆ ↪→Int err due to ambiguity, and then 3 : ⋆ ↪→Int 3. Then, as the left component

reduces to an error, we keep the right component and reduce the whole expression to 3. However,
we would like an error instead.

To avoid this problem, we differentiate two kinds of errors: ambiguity errors erra and type errors

errt. The expression (1 : ⋆, 2 : ⋆) : Int reduces to an ambiguity error erra, and 1 : ⋆ : Bool reduces to
a type error errt. Going back to the last example ((1 : ⋆ , , 2 : ⋆) : ⋆ , , 3) : Int, as the left component

reduces to an ambiguity error, we propagate this error to the whole expression and reduce to erra.

Encoding theGTFL≲ Calculus and Modular Type-based Invariants. Garcia et al. [2016] developed a
gradually-typed lambda calculus with records and subtyping (GTFL≲) using the AGT methodology.

They use gradual rows ({li : Si, ⋆}) to represent records with incomplete type information. Extra
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fields, which are not reflected in the type, can be typed with ⋆. Two examples are given next.

({l1 = 1, l2 = True, l3 = . . . , . . .} : {l1 : Int, l2 : Bool}).l2 ↪→∗ True

({l1 = 1, l2 = True, l3 = . . . , . . .} : {l1 : Int, ⋆}).l2 ↪→∗ True : ⋆

In the first program, we have a record with multiple fields, but where only two fields are statically

known. The other fields are hidden via subtyping. The projection label l2 is contained in the record

type and value. Thus the program is well-typed. If we try to project l3 instead, the program is

ill-typed and it is statically rejected. The second program illustrates gradual rows. Although the

projected field is missing in the type, the value of l2 field can still be projected. Since the l2 field
is contained in the extra unknown part ⋆. Gradual rows allow extra fields to be projected and

checking whether fields are present is performed at runtime.

Gradual rows can be encoded easily in λM⋆
via merges, intersection types and the unknown

type in λM⋆
. The above programs are encoded in λM⋆

as follows.

(({l1 = 1} , , {l2 = True} , , {l3 = . . .} , , . . .) : {l1 : Int}& {l2 : Bool}).l2 ↪→∗ True (1)

(({l1 = 1} , , {l2 = True} , , {l3 = . . .} , , . . .) : {l1 : Int}& ⋆).l2 ↪→∗ True : ⋆ (2)

Compared to GTFL≲ , λM
⋆
has extensible records (via the merge operator), whereas GTFL≲ only

supports fixed size records. Thus, GTFL≲ cannot immediately encode multiple inheritance directly

(which can be supported via record concatenation) and, it cannot encode first-class classes and

dynamic inheritance either. An important difference between GTFL≲ and our work is that GTFL≲
does not allow records with the same label to be present, even if these are in the dynamic parts of

the rows: GTFL≲ statically rejects records with repeated labels. This approach is possible to adopt

in GTFL≲ because, with fixed-sized records, all labels are statically known. However, this approach
is problematic with extensible records and concatenation. Let us look at the following program:

let f (x : ⋆)(y : ⋆) = x , , y in f {l1 = 1} {l1 = 2}

Here two dynamically typed expressions (x and y) are merged. If two records {l1 = 1} and {l1 =
2} are passed as arguments to f, there will be ambiguity. There are two possible designs. We

could conservatively reject concatenation/merges with dynamic components. But this would be

undesirable as it would prevent programs such as the gradual circle trait with an unknown superclass

presented earlier. The other option is to allow concatenating two records with unknown fields at

runtime and check ambiguity errors at runtime, which is the approach that we take.

The dynamic semantics of λM⋆
does not preserve the semantics of GTFL≲ . Thus we do not

prove an operational correspondence result. The first reason for this is that λM⋆
employs a lazy

semantics, whereas GTFL≲ uses an eager semantics for higher-order casts. The second reason is

that the original semantics of GTFL≲ [Garcia et al. 2016] fails to preserve some expected modular
type invariants. Although this definition has never been formally stated, it is associated with the

static guarantees that types can provide regarding programs, such as parametricity granted by

polymorphism. Subtyping also provides modular type invariants. Consider A <: B and program:

let x : B = new A() in e. By looking at the type of x, we know that e cannot use x as an A.

In the context of gradual typing, Bañados Schwerter et al. [2021] pointed out that the semantics

of GTFL≲ fails to preserve expected modular type invariants. Let us consider program let x : {l1 :
Int} = {l1 = 5, l2 = True} in x. According to subtype-based reasoning of static typing, the l2 field
should not be accessed in the body of the let. However, for a gradually typed variant of the program:

let x : {l1 : Int} = {l1 = 5, l2 = True} : ⋆ in (x : ⋆).l2. the original formulation of GTFL≲ should
signal a run-time type error, but it does not. Instead it accesses the l2 field of the record. In essence,

the record preserves the hidden fields and allows them to be accessed later. When casting to ⋆ and

back to the original record type, the l2 field is exposed.
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As discussed in Section 2.2, calculi with the merge operator and disjoint intersection types

provide a solution for similar problems by enforcing the expected invariants using casting. This

solution extends to a setting with gradual typing. The earlier example can be encoded in λM⋆
:

(({l1 = 5} , , {l2 = True}) : ⋆ : {l1 : Int} : ⋆ : {l1 : Int}& {l2 : Bool}).l2
↪→ ({l1 = 5} : ⋆ : {l1 : Int}& {l2 : Bool}).l2 ↪→ errt

When ({l1 = 5} , , {l2 = True}) : ⋆ is cast under {l1 : Int}, the field l1 is selected and l2 field is

dropped. Then, trying to cast the resulting record under {l1 : Int}& {l2 : Bool}, a type error is raised
since the record no longer contains l2.

The Dynamic Gradual Guarantee in λM⋆. Siek et al. [2015b] proposed a set of criteria for gradual
typing that encompasses several properties. An important property is referred to as the dynamic
gradual guarantee (DGG), which relates to the notion of (im)precision. We say that one type is more

precise than another (A ⊑ B) if it provides more static information. For instance, Int&Bool ⊑
Int& ⋆ ⊑ ⋆& ⋆ ⊑ ⋆. Similarly, we say that one program is more precise than another if it has more

precise types. The DGG ensures that reduction is monotone with respect to imprecision.

The DGG requires special attention as it is in conflict with determinism. If we define the DGG as:

decreasing precision does not alter the behavior of the program (and does not introduce new errors
of any kind), then the DGG is not satisfied. To illustrate this, we provide a minimal example that

demonstrates this incompatibility. Consider the following program:

((1 , , True) : Int , , (2 , , False) : Bool) : Bool

↪→ (1 , , (2 , , False) : Bool) : Bool ↪→ (1 , , False) : Bool ↪→ False

If we consider a less precise version of this program, ((1 , , True) : ⋆ , , (2 , , False) : ⋆) : Bool,
a significant problem arises. We cannot determine which of the two merges should provide the

required boolean. Arbitrarily selecting the left merge would yield True, breaking the DGG. Ar-

bitrarily choosing the right merge does not address this problem either. For instance, a slightly

different program ((1 , , True) : Int , , (2 , , False) : Bool) : Int reduces to 1, but a less precise

program ((1 , , True) : ⋆ , , (2 , , False) : ⋆) : Int would reduce to 2, also violating the DGG. Hence,

in λM⋆
, this expression reduces to an ambiguity error erra. However, if the program is modified

to ((1 , , False) : ⋆ , , (2 , , False) : ⋆) : Bool, λM⋆
reduces to False since any path would yield the

same result. In our work we prove a variant of the DGG: decreasing precision does not alter the

behavior of the program modulo ambiguity errors (i.e. new type errors are not introduced).

Encoding First-Class Classes and Dynamic Inheritance. With λM⋆
we can encode a form of first-

class classes/traits and dynamic multiple inheritance with gradual typing. The encoding follows

an existing encoding of first-class traits employed in the SEDEL and CP programming languages.

The addition of gradual typing is essentially orthogonal to the existing encoding. The basic idea of

the encoding is well-known and itself inspired by work on object encodings using records [Bruce

et al. 1999; Cardelli 1988; Cook and Palsberg 1989; Wand 1989]. In the well-known record encoding

records are used to model objects, record concatenation models (multiple) inheritance, classes (or

traits) can be modeled as functions parametrized by self-references that return records (objects), and

fixpoints model class instantiation. In the translation of those ideas to λM⋆
, records are modeled

as merges of single field records, and record concatenation is just a special case of merges. For

example, a simplified version of the encoding, for the circle trait, in λM⋆
is:

let circle = λsuper. (super,, {area = (λradius. pi * radius * radius) : ⋆ → int}) in
let obj = circle {} in
obj.area 2
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Types A,B,C F Int | ⊤ | ⊥ | A → B | {l : A} | A&B

Ordinary Types A F Int | A → B | {l : A}

Expressions e F x | i | Top | λx. e | {l = e} | e.l | e : A | e1 e2 | e1 , , e2 | fix x. e
Functionals f F λx. e | f : A → B

Values v F Top | i | f : A → B | v1 , , v2 | {l = v}

Term contexts Γ F · | Γ, x : A

Frames F F (λx. e) □ | □ e | □ : A | v , , □ | □ , , e | {l = □} | □.l

Syntactic sugar {l1 : A1; . . . ; ln : An} ≜ {l1 : A1}& · · · & {ln : An}

{l1 = e1; . . . ; ln = en} ≜ {l1 = e1} , , . . . , , {ln = en}

Fig. 2. The syntax of the λM calculus.

In this example we omit the treatment of self references for simplicity of presentation. The idea is

that circlemodels the corresponding trait. To model the inheritance of a super trait, we simply use

the merge operator to merge superwith the newmethods. Furthermore, note that it is easy to model

multiple inheritance. For instance, we could modify the program above to take two super traits

super1 and super2 as arguments instead of super. Then we could simply use the merge operator to

compose all the super traits (super1,,super2) and then merge that with the additional methods.

Note also, that in this case super has an unknown type. We create an object by calling circle with

a superclass, which for this example is empty. Then we call the area method in the object, to obtain

the area as a result. If we change the second line to:

let obj = circle ({area = (λp. 1) : ⋆ → int}) in

with a super trait containing a conflicting areamethod, then an ambiguity error is raised at runtime

for the program. Since the addition of the unknown type is essentially orthogonal to the encoding,

we can simply reuse previous encodings in λM⋆
to model a source language with first-class traits

or classes. Thus we omit a formal treatment of the encoding in this paper. For the formal treatment

of the encoding, and its full details, including the treatment of self-references, we refer the reader

to previous work on encoding first-class traits [Bi and Oliveira 2018; Zhang et al. 2021].

3 The λM Calculus: Syntax, Typing and Semantics
This section introduces the λM calculus: a variant of the λi calculus [Huang et al. 2021; Oliveira et al.
2016]. The main change is the adoption of lazy dynamic semantics for annotations on higher-order

values. The λM calculus is the static counterpart of the gradually typed calculus in Section 4.

3.1 Syntax
The syntax of the λM calculus is shown in Figure 2. Meta-variables A, B, and C range over types.

There are base types (Int), the greatest type (⊤), the least type (⊥) and compound types. Compound

types are function types (A → B) or intersection types (A&B). A single field record type {l : A}

has a field l with type A. Multi-field record types are encoded by intersections of single field record

types [Reynolds 1997]. Ordinary types (A ) are types that are not intersection types, the top type

or the bottom type. They are the types of atomic values appearing in a merge.

Meta-variable e ranges over expressions. Most expressions are typical: variables (x); integers (i);
a canonical top value (Top); annotated expressions (e : A); applications (e1 e2); lambda expressions

(λx. e) and fixpoints (fix x. e). The merge of expressions e1 and e2 is denoted by (e1 , , e2). A record

{l = e} stands for a single field record with label l and expression e. Selection of record fields is

done by the projection expression e.l. A merge of single field records encodes multi-field records.
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Typing modes ⇔ F⇒|⇐

Γ ⊢ e ⇔ A (Bidirectional Typing)

⊢B
Γ ⊢ e ⇒ A A <: B

Γ ⊢ e ⇐ B
Typ-sub

Γ ⊢ e1 ⇒ A → B

Γ ⊢ e2 ⇐ A

Γ ⊢ e1 e2 ⇒ B
Typ-app

Γ, x : A ⊢ e1 ⇐ B

Γ ⊢ e2 ⇒ A

Γ ⊢ (λx. e1) e2 ⇐ B
Typ-rt

Γ ⊢ Top ⇒ ⊤
Typ-top

Γ ⊢ e ⇐ A

Γ ⊢ e : A ⇒ A
Typ-anno

Γ ⊢ e ⇒ A

Γ ⊢ {l = e} ⇒ {l : A}
Typ-rcd

Γ ⊢ i ⇒ Int
Typ-lit

⊢A Γ, x : A ⊢ e ⇐ B

Γ ⊢ λx. e ⇐ A → B
Typ-abs

⊢A Γ, x : A ⊢ e ⇐ A

Γ ⊢ fix x. e ⇐ A
Typ-fix

x : A ∈ Γ

Γ ⊢ x ⇒ A
Typ-var

A ∗ B Γ ⊢ e1 ⇒ A

Γ ⊢ e2 ⇒ B

Γ ⊢ e1 , , e2 ⇒ A&B
Typ-merge

A • l ▷ B
Γ ⊢ e ⇒ A

Γ ⊢ e.l ⇒ B
Typ-proj

Fig. 3. The type system of the λM calculus.

Meta-variable f ranges over functionals, which are lambdas with zero or more function type

annotations. Meta-variable v ranges over values. Values include: integers i; the top value Top;
annotated functionals f : A → B; a merge of values v1 , , v2 and records {l = v}. This is different
from the λi calculus, where functional values only have a single annotation. This change is made

to delay the combination of function type annotations, to help gradualizing the calculus. Typing

context Γ tracks bound variables x with their type A. Meta-variable F ranges over frames [Siek

et al. 2015a]. The frame is mostly standard but it includes annotated expressions, and merges.

Additionally, the frame for application (λx. e) □ restricts the function to be an unannotated lambda,

as applications of annotated lambdas are eliminated by annotating both the argument and the

entire application.

3.2 Bidirectional Typing
Like λi, we use bidirectional type checking, to avoid a general subsumption rule. As shown by

previous work, a general subsumption rule is known to cause ambiguity in the presence of a merge

operator [Huang et al. 2021; Oliveira et al. 2016]. The typing judgment is represented as Γ ⊢ e ⇔ A.

The typing mode ⇔ is a metavariable, whose definition is shown at the top of Figure 3, and is

either inference (⇒) or checking (⇐). As in λi, besides disallowing non-disjoint merges, we do

not support unrestricted intersections, which means that expressions like 1 : Int& Int, where the
intersection in the type annotation is not disjoint, are not allowed.

Typing Relation. The typing relation of the λM calculus is shown in Figure 3. Most of the rules

follow the bidirectional type system of the λi calculus. In these rules, to avoid the ambiguity

introduced by the merge operator, the disjointness restriction on rule Typ-merge is used to reject

examples such as 1 , , 2. The disjointness restriction applies to any types. We define an auxiliary

judgement ⊢ A, adopted from Oliveira et al. [2016], which defines well-formed types. The full

relation is mostly straightforward and shown in the extended version of the paper. The only notable

rule imposes a disjointness restriction on all intersection types. There is also a standard (omitted)

relation that checks if contexts are well-formed (i.e. all bound variables have well-formed types).
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A <: B (Subtyping)

A1 <: A2

{l : A1} <: {l : A2}
S-rcd

Int <: Int
S-z

A <: ⊤
S-top

B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2

S-arr

A1 <: A2

A1 <: A3

A1 <: A2 &A3

S-and

A1 <: A3

A1 &A2 <: A3

S-andl

A2 <: A3

A1 &A2 <: A3

S-andr

⊥ <: A
S-bot

A ⊔ B (Common Ordinary Super Types (COST))

Int ⊔ Int
co-int

⊥ ⊔⊥
co-bot

⊥ ⊔A
co-bo

A ⊔ ⊥
co-ob

(A1 → B1) ⊔ (A2 → B2)
co-arr

{l : A} ⊔ {l : B}
co-rcd

A1 ⊔ B

(A1 &A2) ⊔ B
co-andl

A2 ⊔ B

(A1 &A2) ⊔ B
co-andr

A ⊔ B1

A ⊔ (B1 &B2)
co-randl

A ⊔ B2

A ⊔ (B1 &B2)
co-randr

Fig. 4. Subtyping and the COST.

Furthermore, we add two more typing rules for records and projections. The typing rule for single

field records is standard (rule Typ-rcd). The type of a projection e.l is obtained by inferring the

typeA of the expression being projected, and extracting the field type fromA (rule Typ-proj) using

an auxiliary relation A • l ▷ B, which is shown in the extended version of the paper. Finally, there

is a typing rule Typ-rt that is only needed for proofs, and is used to type-check terms that only

arise in intermediate steps of reduction. Since lambdas do not have annotations in beta reduction,

the type information is obtained from the arguments.

3.3 Subtyping and Disjointness
Subtyping. The subtyping rules, which are mostly standard, are shown at the top of Figure 4.

Our rules follow the formalization by Davies and Pfenning [2000] but with an additional rule S-rcd

to incorporate record types. The extended subtyping relation is reflexive and transitive.

Disjointness. Our specification of disjointness follows one of the definitions in the original λi:

Definition 3.1 (Disjointness Specification). A ∗spec B ≡ ∀C,A <: C∧ B <: C =⇒ ⊤ <: C

This definition implies that the values that inhabit the two types cannot have overlapping types,

with the exception of top values. Such top values do not cause ambiguity because there is only

one canonical value of type top [Alpuim et al. 2017]. Furthermore, we define a simpler algorithmic

formulation based on a relation that checks whether two types have common ordinary super types

(COST). To define the algorithmic formulation of disjointness, the Common Ordinary Super Types

Relation (COSTR) A ⊔ B is presented in the bottom of Figure 4. In essence values with ordinary

types are the atomic components (i.e. they cannot themselves be merges) of merges. If two types

have a COST then they overlap. For example Int&Bool and Int have the COST Int. When two

types have a COST in common they cannot be disjoint, since we can obtain a different value with

the same overlapping type from each value of the two types. Firstly, note that the top type is a

common supertype of every other type, but it is not a COST (since the top type is not ordinary).

Most rules are intuitive. One rule that deserves explanation rule co-arr: two functions have at
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least one COST: ⊥ → ⊤. Thus, functions cannot be disjoint. For intersections, when A1 &A2 and

one of the types A1 or B1 share ordinary supertypes with the other type B, we can easily conclude

that A1 &A2 has a COST with B (rules co-andl, co-andr, co-randl, and co-randr). With the

help of the COSTR relation, an equivalent algorithmic formulation definition of disjointness is:

Definition 3.2 (Algorithmic Disjointness). A ∗ B ≡ ¬(A ⊔ B)

3.4 Dynamic Semantics
The dynamic semantics of λM employs a type-directed operational semantics (TDOS) [Huang and

Oliveira 2020]. In TDOS, besides the usual reduction relation, there is a special casting relation for

values that is used to convert values to the specified type. Casting is used by the TDOS reduction

relation, and it essentially gives an interpretation of type coercions at runtime.

Casting. The casting rules are shown at the top of Figure 5. Most of the rules directly follow λi.
Rule cast-top and rule cast-lit reduce the values according to the cast type. The main difference,

compared to λi, is in rule cast-abs, which now employs a lazy semantics: functions accumulate

the casting function type (C → D) to the functional value. We return a record value after casting

the field value under the field type (rule cast-rcd). Rule cast-mergel and rule cast-merger

select a value from a merge of values (v1 , , v2) using an ordinary type A. Rule cast-and splits the

intersection type used for the cast, and casts the value and each type separately.

Properties of Casting. Most of the properties of casting of λi hold here as well, and most proofs

are proved by induction on the casting derivation.

Some important properties of the casting relation are shown next.

Lemma 3.3 (Casting Determinism). If · ⊢ v ⇐ B, v ↪→A v1 and v ↪→A v2 then v1 = v2.

Lemma 3.4 (Casting Preservation). If · ⊢ v ⇐ B, ⊢A and v ↪→A v ′ then · ⊢ v ′ ⇒ A.

Lemma 3.5 (Casting Progress). If · ⊢ v ⇐ A then ∃v ′, v ↪→A v ′.

Lemma 3.3 says that the result of casting is unique. Note that the determinism lemma is non-

trivial and only holds for well-typed values. Its proof requires reasoning about the properties of

well-typed values. The casting relation preserves the type of the cast (Lemma 3.4), and there always

exists a result when the value is cast under A (Lemma 3.5).

Reduction. The reduction rules are shown at the bottom of Figure 5. Rule Step-eval is a standard

rule for evaluation contexts. Dealing with applications and beta reduction is interesting and different

from λi. Firstly, rule step-beta is standard beta reduction. Secondly, the top-level function annota-

tion is eliminated by annotating the input types for arguments and output types for applications

(rule step-app). In rule step-annov, annotated values v : A are evaluated by casting them under

the annotated types. However, (v : A) can be a (functional) value. In such case, since the expression

is already a value, it should not be reduced. Thus, we require the condition NotVal (v : A) which is

defined as not a functional value: NotVal e ≡ e ≠ (f : A → B). Fixpoints substitute themselves in

the body (rule step-fix). Rule Step-proj is for projections of record values. To project the field

value, we cast the value v by the record type {l : A}. The field type A is obtained by projecting the

dynamic type of v by projection label l. The dynamic type for values ty(v) is:

ty(i) = Int ty(Top) = ⊤ ty((f : A → B)) = A → B
ty({l = p}) = {l : ty(p)} ty((v1 , , v2)) = (ty(v1))& (ty(v2))

An important property of a well-typed value is that its dynamic type is the inferred type of a value.

Lemma 3.6 (Dynamic Types). For any value v, if · ⊢ v ⇒ A then ty(v) = A.
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v ↪→A v ′ (Casting)

v ↪→⊤ Top
cast-top

i ↪→Int i
cast-lit

A → B <: C → D

f : A → B ↪→C→D f : A → B : C → D
cast-abs

v ↪→A v ′

{l = v} ↪→{l:A} {l = v ′}
cast-rcd

v1 ↪→A v ′
1

v1 , , v2 ↪→A v ′
1

cast-mergel

v2 ↪→A v ′
2

v1 , , v2 ↪→A v ′
2

cast-merger

v ↪→A v1 v ↪→B v2

v ↪→A&B v1 , , v2
cast-and

e ↪→ e ′ (Small-step Semantics)

e ↪→ e ′

F[e] ↪→ F[e ′]
Step-eval

(f : A1 → A2) e ↪→ (f (e : A1)) : A2

Step-app

(λx. e) v ↪→ e[x 7→ v]
Step-beta

(fix x. e) : A ↪→ e[x 7→ (fix x. e) : A] : A
Step-fix

v ↪→A v ′ NotVal (v : A)

v : A ↪→ v ′
Step-annov

ty(v) • l ▷A v ↪→{l:A} {l = v ′}

v.l ↪→ v ′
Step-proj

Fig. 5. Casting and small-step semantics for λM.

Finally, the λM calculus is deterministic and type sound:

Theorem 3.7 (Determinism). If · ⊢ e ⇔ A, e ↪→ e1 and e ↪→ e2 then e1 = e2.

Theorem 3.8 (Type Preservation). If · ⊢ e ⇔ A and e ↪→ e ′ then · ⊢ e ′ ⇔ A.

Theorem 3.9 (Progress). If · ⊢ e ⇒ A then e is a value or ∃e ′, e ↪→ e ′.

4 The λM⋆ Calculus : Syntax, Typing and Semantics
This section introduces the λM⋆

calculus, the gradual counterpart of λM. We prove determinism

and type soundness. Section 5 presents the gradual typing criteria satisfied by λM⋆
.

4.1 Syntax
The syntax of λM⋆

calculus is shown in Figure 6. Types extend the types of λM calculus with the

unknown type (⋆). Because λM⋆
is gradually typed, runtime type errors are possible. Runtime type

errors are denoted as errt for type errors, and erra for ambiguity errors. We use err∗ when the type

of the error is not important or inferred from the context. Results (r) can be any expressions or an

error err∗. Meta-variable s ranges over ordinary values. Ordinary values include: integers i; the top
value Top; functional values and records with a value field {l = v}. Meta-variable g ranges over

ground values. Ground values are values with ground types (⊤, Int or dynamic compound types

such as ⋆& ⋆). Meta-variable v stands for well-formed values. Values are either ordinary values s, a
merge of values v1 , , v2 or ground values annotated with unknown type (g : ⋆). Compared to the

λM calculus, we extend values with dynamic ground values (g : ⋆).
To encode dynamically typed lambdas (i.e. lambdas without static type information) we need

to insert ⋆ annotations. This approach is similar to the approach used in GTLC [Siek and Taha

2006], where an unannotated lambda λx. e is syntactic sugar for λ(x : ⋆). e. While we could apply a
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Types A,B,C F Int | ⊤ | ⊥ | A → B | A&B | {l : A} | ⋆

Expressions e F x | i | Top | λx. e | {l = e} | e.l | e : A | e1 e2 | e1 , , e2 | fix x. e
Results r F e | err∗
Functionals f F λx. e | f : A → B

Ordinary values s F Top | i | f : A → B | {l = v}

Ground values g F Top | i | λx. e : ⋆ → ⋆ | f : ⋆ → ⋆ | {l = g : ⋆} | g : ⋆ , , g : ⋆

Values v F s | v1 , , v2 | g : ⋆

Term contexts Γ F · | Γ, x : A

Frames F F (λx. e) □ | □ e | v , , □ | □ , , e | {l = □} | □.l | □ : A

Fig. 6. Syntax of the λM⋆ calculus.

similar transformation for λM⋆
terms, simply adding a ⋆ annotation in non-annotated lambdas, we

can do better in λM⋆
because of bidirectional type checking. We only need to insert annotations on

unannotated lambdas that are in inference positions. For example, given the dynamically typed ex-

pression (λf.λx. f x)(λy.y) we can obtain a well-typed λM⋆
program by automatically annotating

only one lambda abstraction: ((λf.λx. f x) : ⋆)(λy.y). Bidirectional type checking can propagate

type information to lambdas in checking positions. So, while those lambdas are unannotated, they

are still statically typed. This idea extends to dynamically typed fixpoints, which can be annotated

in a similar way. We show the details of this sugaring process in the extended version of the paper.

4.2 Consistent Subtyping and Disjointness
Consistent Subtyping. To integrate the type consistency and subtyping relations in gradual typing,

we follow the consistent subtyping approach in Xie et al. [2019]’s work, which was inspired by

an earlier approach by Siek and Taha [2007]. The type consistency rules are at the top of Figure 7.

They are standard and proved to be reflexive and symmetric but not transitive. The subtyping rules

extend the subtyping rules of λM with a rule for dynamic types (rule S-dyn), where a dynamic

type is only a subtype of itself. Following Xie et al.’s approach, we add a premise in rule S-Top,

which restricts type A to be static. The subtyping rules are also reflexive and transitive.

The definition of consistent subtyping is supported by subtyping and consistency. Our consistent

subtyping relation is extended with intersection types and (single field) record types, and is shown

in Figure 7. Consistent subtyping is proved to be equivalent to the declarative formulation of

consistent subtyping proposed by Xie et al. [2019]:

Lemma 4.1 (Consistent Subtyping). A ≲ B ≜ ∃A ′ B ′. A <: A ′ and A ′ ∼ B ′ and B ′ <: B.

This specification defines consistent subtyping in terms of type consistency and subtyping, and

is a useful guideline for the design of consistent subtyping relations. Note that, compared to the

subtyping relation, all the rules are essentially the same, with the exception of rules CS-dynl,

CS-dynr, and CS-top which have a different treatment from subtyping.

Disjointness and COSTR. To establish the specification of gradual disjointness (A ∗spec B), we
draw inspiration from AGT and lift the disjointness definition from λM, as follows:

Definition 4.2 (Disjointness Specification). A ∗spec B ≡ ∃ Static A ′ B ′. A ′ ⊑ A ∧ B ′ ⊑ B ∧

(∀ C, A ′ <: C ∧ B ′ <: C =⇒ ⊤ <: C)

We use an adapted version of the existential lifting of predicates, which relies on the precision

relation⊑ between types, defined in Figure 7. Every type is more precise than itself and the unknown

type ⋆. The remaining rules are defined inductively. The original AGT existential lifting of predicates
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A ∼ B (Type Consistency)

Int ∼ Int
sim-i

⊤ ∼ ⊤
sim-top

⊥ ∼ ⊥
sim-bot

A ∼ C B ∼ D

A → B ∼ C → D
sim-arr

⋆ ∼ A
sim-dynl

A ∼ ⋆
sim-dynr

A ∼ C B ∼ D

A&B ∼ C&D
sim-merge

A1 ∼ A2

{l : A1} ∼ {l : A2}
sim-rcd

A <: B (Additional or Changed Subtyping Rules)

Static A

A <: ⊤
S-Top

⋆ <: ⋆
S-dyn

A ≲ B (Consistent Subtyping)

Int ≲ Int
CS-z

⋆ ≲ A
CS-dynl

A ≲ ⋆
CS-dynr

⊥ ≲ A
CS-bot

A ≲ ⊤
CS-top

B1 ≲ A1 A2 ≲ B2

A1 → A2 ≲ B1 → B2

CS-arr

A1 ≲ A3

A1 &A2 ≲ A3

CS-andl

A2 ≲ A3

A1 &A2 ≲ A3

CS-andr

A1 ≲ A2 A1 ≲ A3

A1 ≲ A2 &A3

CS-and

A1 ≲ A2

{l : A1} ≲ {l : A2}
CS-rcd

A ⊑ B (Type Precision)

A ⊑ A
tp-refl

A ⊑ ⋆
tp-dyn

A1 ⊑ A2 B1 ⊑ B2

(A1 → B1) ⊑ (A2 → B2)
tp-abs

A1 ⊑ A2 B1 ⊑ B2

A1 &B1 ⊑ A2 &B2

tp-and

A1 ⊑ A2

{l : A1} ⊑ {l : A2}
tp-rcd

Fig. 7. Consistency, Subtyping, Consistent Subtyping and Type Precision.

is as follows: P̃(A,B) = ∃ Static A ′ ∈ γ(A), Static B ′ ∈ γ(B).P(A ′, B ′), where γ represents a

concretization function that maps gradual types to set of static types. As the precision relation in

AGT is also defined in terms of concretization (A ⊑ B ≡ γ(A) ⊆ γ(B)), the existential lifting of

predicates can be equivalently expressed as P̃(A,B) = ∃ Static A ′ ⊑ A, Static B ′ ⊑ B.P(A ′, B ′).
We provide a simplified definition of Def. 4.2 in the extended version of the paper, which does

not use existentials (proving its equivalence). Finally, the algorithmic definition of disjointness is

syntactically identical to the one in λM (as ⋆ is not related to any other gradual type in COSTR):

A ∗ B ≡ ¬(A ⊔ B). This definition has been proven to be equivalent to both formal specifications.

4.3 Bidirectional Typing
As in the λM calculus, bidirectional typing is used. The typing rules are almost the same as those

used by the λM calculus in Figure 3. New rules, or rules that are changed are shown next.

Typ-cs

⊢B A ≲ B
Γ ⊢ e ⇒ A

Γ ⊢ e ⇐ B

Typ-app

A ▷ A1 → A2 Γ ⊢ e1 ⇒ A
Γ ⊢ e2 ⇐ A1

Γ ⊢ e1 e2 ⇒ A2

Typ-abs

⊢A1 A ▷ A1 → A2

Γ, x : A1 ⊢ e ⇐ A2

Γ ⊢ λx. e ⇐ A
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In gradual typing, the unknown type is used to allow some programs with runtime type errors.

We allow these kind of programs by changing the subsumption rule (rule Typ-sub) in Figure 3 to

rule Typ-cs, which now uses consistent subtyping instead of subtyping. For example, 1 : ⋆ : Bool
and True : ⋆ : Int are allowed by the new rule Typ-cs. Application and lambdas (rules Typ-app

and Typ-abs) use the match partial operator to deduce a function type from a gradual type. This

operator is defined as ⋆ ▷ ⋆ → ⋆, andA1 → A2 ▷ A1 → A2. For projections, we allow programs

such as (({l1 = 1} , , True) : ⋆).l2 and ((1 , , True) : ⋆).l. The presence of a dynamic type relaxes

the type checker to allow projections from expressions with type ⋆. In the case that the label being

projected does not exist a runtime error is raised. The definitions of projection typing (A • l ▷ B)
and well-formed types for λM⋆

are shown in the extended version.

4.4 Casting
The casting rules are shown in the Figure 8. Because of runtime errors, the casting judgement

v ↪→A r returns a result (r), which contains values v, type errors errt and ambiguous errors erra.

Casting ordinary values. Rule cast-top, rule cast-lit and rule cast-rcd are the same as λM cal-

culus. To adapt to a gradual calculus, the subtyping premise of rule cast-Abs is updated to account

for consistent subtyping.

Casting merges and intersection types. Rule cast-and mimics its static counterpart: it casts the

value to both A and B. However, it also handles ambiguity errors and type errors. To achieve this,

this rule utilizes the r1 ∧ r2 = r3 meta-function defined at the bottom right side of Figure 8. The

cast reduces to an error if either of the results is an error, giving priority to type errors to maintain

determinism with respect to rule cast-err. Otherwise, it merges both results. Rule cast-merge

handles the case where a merge is cast to an ordinary type. Compared to λM, as both components

of a merge can have imprecise type annotations, the ordinary type can be a consistent supertype

of both types (e.g. (1 : ⋆, True) cast to Bool). Thus, we need to check dynamically if there is no

ambiguity (e.g. (1 : ⋆, 2) cast to Int). This rule first casts both components of the merge and then

combines the results using the meta-function r1 ∨ r2 = r3 defined at the bottom left side of Figure 8.

The cast reduces to a value if either both components reduce to the same value or one component

reduces to a value and the other to a type error. For example, if we cast (1 : ⋆, True) to Int, the left
and right components reduce to 1 and errt respectively, so we reduce to 1. Similarly, (1 : ⋆ , , 1) cast
to Int reduces to 1 as both branches reduce to the same value. However, in cases like (1 : ⋆ , , 2) , , 3
cast to Int, the left component would result in an ambiguity error and the right component would

yield 3. Instead of wrongly keeping the right component, we yield an ambiguity error. In other

words, contrary to rule cast-and, we prioritize ambiguity errors over type errors.

Casting to and from unknown. Rules cast-sd and cast-mergd cast values to ⋆. In rule cast-sd,

ordinary values are cast to the top-level constructor of their type with the ground(A) function:

ground(⊤) = ⊤ ground(Int) = Int ground(A → B) = ⋆ → ⋆ ground({l : A}) = {l : ⋆}
The result of this cast is a ground value, annotated with the ⋆ type to preserve types. We cast to

a ground type, instead of just annotating the value with ⋆ directly, to allow dropping the ⋆ type
when the ground value is used. For example, λx. x : Int → Int cast to ⋆ returns λx. x : Int →
Int : ⋆ → ⋆ : ⋆ then, if the value is cast to Bool → Bool, the ⋆ type can be dropped safely to

obtain λx. x : Int → Int : ⋆ → ⋆ : Bool → Bool. On the contrary, rule cast-mergd does not cast

the merge value (v1 , , v2) to the type-level constructor ⋆& ⋆. Otherwise it would create a cycle

with rule cast-and. Consider program (1 , , True) cast to ⋆. If we cast (1 , , True) to ⋆& ⋆, then
by rule cast-and, we would yield casting from (1 , , True) to ⋆ again, forming a cycle. Therefore,

we cast v1 and v2 to ⋆ separately. For example, if (1 , , λx. x : Int → Int) is cast to ⋆, the dynamic
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v ↪→A r (Casting)

v ↪→⊤ Top
cast-top

i ↪→Int i
cast-lit

v ↪→A v ′

{l = v} ↪→{l:A} {l = v ′}
cast-rcd

A → B ≲ C → D

f : A → B ↪→C→D f : A → B : C → D
cast-Abs

v1 ↪→A r1 v2 ↪→A r2

v1 , , v2 ↪→A r1 ∨ r2
cast-merge

v ↪→A r1 v ↪→B r2

v ↪→A&B r1 ∧ r2
cast-And

s ↪→ground(ty(s)) g

s ↪→⋆ g : ⋆
cast-sd

v1 ↪→⋆ v ′
1

v2 ↪→⋆ v ′
2

v1 , , v2 ↪→⋆ (v ′
1
, , v ′

2
) : ⋆

cast-mergd

g : ⋆ ↪→⋆ g : ⋆
cast-dd

g ↪→A r

g : ⋆ ↪→A r
cast-dyna

ty(v)  A

v ↪→A errt
cast-err

v ↪→⊥ errt
cast-bot

v ↪→A err∗
{l = v} ↪→{l:A} err∗

cast-rcdp

v∨ v = v v1 ∧ v2 = v1 , , v2
v1 ∨ v2 = erra where v1 ≠ v2 erra ∧ erra = erra
errt ∨ r = r r∨ errt = r r∧ errt = errt errt ∧ r = errt
erra ∨ r = erra r∨ erra = erra v∧ erra = erra erra ∧ v = erra

Fig. 8. Casting for the λM⋆ calculus.

annotated value (1 : ⋆ , , (λx. x : Int → Int : ⋆ → ⋆ : ⋆)) : ⋆ is returned. Rule cast-dd returns itself

since the value being cast already has type ⋆. Finally, rule cast-dyna casts dynamic ground values

to an ordinary type A. When (1 : ⋆ , , True) : ⋆ is cast to Int, it results in 1.

Casting to error. Rule cast-err raises a type error if the dynamic type of value v is not a consistent
subtype of the cast type. Rule cast-bot raises a type error when a value is cast to ⊥, to cover the

case when a value v of unknown type is cast to ⊥. Finally, rule Cast-rcdp propagates errors when

a cast on the underlying value of a record fails.

4.5 Reduction
The reduction rules are shown in Figure 9. Rule Step-eval, rule Step-annov, rule Step-beta,

rule Step-app and rule Step-proj are the same as λM. However note that NotVal e is extended
to: NotVal e ≡ e ≠ (f : A → B) ∧ e ≠ g : ⋆. In gradually typed lambda calculi, errors may be

raised at run-time. Therefore, rule Step-blame is designed to deal with that case. Rule Step-annop

can deal with the case where casting fails. Rule Step-projp shows that we need to consider the

case of projecting a value with unknown types, and the projection fails. There are three rules

related to beta reduction: rule Step-beta, rule Step-app and rule Step-dyn. Compared to λM,

rule Step-dyn is new. Because the unknown type ⋆ can be matched with ⋆ → ⋆ in applications

((g : ⋆) e), (g : ⋆) should be annotated with ⋆ → ⋆ (rule Step-dyn). Then the lambda abstraction

can be extracted via casting (rule Step-annov) or filter the ill-typed values, which are hidden by

the type ⋆ (rule Step-annop). For example, both (1 : ⋆) 2 and ((1 , , λx. x : ⋆ → ⋆) : ⋆) 2 are well
typed. For the expression (1 : ⋆) 2, a type error is detected when rule Step-dyn annotates (1 : ⋆)
with ⋆ → ⋆ and the cast fails via rule Step-annov. However the lambda value (λx. x : ⋆ → ⋆) is
extracted for the second expression with a ⋆ → ⋆ annotation after using rule Step-annov.
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e ↪→ r (Small-step Semantics)

e ↪→ e ′

F[e] ↪→ F[e ′]
Step-eval

e ↪→ err∗
F[e] ↪→ err∗

Step-blame

(λx. e) v ↪→ e[x 7→ v]
Step-beta

(g : ⋆) e ↪→ ((g : ⋆) : ⋆ → ⋆) e
Step-dyn

ty(v) • l ▷A v ↪→{l:A} {l = v ′}

v.l ↪→ v ′
Step-proj

ty(v) • l ▷A v ↪→{l:A} err∗

v.l ↪→ err∗
Step-projp

v ↪→A v ′ NotVal (v : A)

v : A ↪→ v ′
Step-annov

(f : A1 → A2) e ↪→ (f (e : A1)) : A2

Step-app

(λx. e) : ⋆ ↪→ (λx. e) : ⋆ → ⋆ : ⋆
Step-abs

v ↪→A err∗
v : A ↪→ err∗

Step-annop

(fix x. e) : A ↪→ e[x 7→ (fix x. e) : A] : A
Step-fix

Fig. 9. Semantics of λM⋆.

Properties of Reduction. The λM⋆
calculus is deterministic and type sound. Theorem 4.3 says

that the dynamic semantics is deterministic. Furthermore, the λM⋆
calculus preserves types

(Theorem 4.4), and it has progress (Theorem 4.5).

Theorem 4.3 (Determinism). If · ⊢ e ⇔ A, e ↪→ r1 and e ↪→ r2 then r1 = r2.

Theorem 4.4 (Type Preservation). If · ⊢ e ⇔ A and e ↪→ e ′ then · ⊢ e ′ ⇔ A.

Theorem 4.5 (Progress). If · ⊢ e ⇒ A then e is a value or ∃r, e ↪→ r.

Example. Finally, an example to demonstrate how reduction in λM⋆
works is:

(((1 : ⋆) , , (λx. (x : Int) : ⋆ → ⋆ : ⋆)) : ⋆) (1 , , Top)

↪→∗
{by rule Step-dyn, rule Step-eval, rule Step-app and rule Step-annov }

((λx. (x : Int) : ⋆ → ⋆) (1 , , Top) : ⋆) : ⋆

↪→∗
{by rule Step-eval, rule Step-app, rule Step-beta and rule Step-annov }

(1 : ⋆ , , Top : ⋆) : ⋆ : Int : ⋆ : ⋆

↪→∗
{by rule Step-eval and rule Step-annov }

1 : ⋆

In this example, the lambda (λx. (x : Int) : ⋆ → ⋆) is extracted by casting ((1 : ⋆) , , (λx. (x : Int) :
⋆ → ⋆ : ⋆)) to ⋆ → ⋆. The argument (1 , , Top) is cast with the function input type ⋆ to obtain

(1 : ⋆ , , Top : ⋆) : ⋆. Then the argument is substituted into the function body and cast to Int. Finally
the expected result 1 : ⋆ is returned.

5 Gradual Typing Criteria and Encoding GTFL
In this section, we show that λM⋆

satisfies gradual typing criteria, and can encode the static

semantics ofGTFL≲ [Garcia et al. 2016], which is a gradual calculus with records and subtyping. As

we have mentioned in Section 2.4, we need to employ a variant of the dynamic gradual guarantee.
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e1 ⊑ e2 (Precision relation for expressions)

e ⊑ e
ep-refl

e1 ⊑ e2

λx. e1 ⊑ λx. e2
ep-abs

e1 ⊑ e2

fix x. e1 ⊑ fix x. e2
ep-fix

e1 ⊑ e ′
1

e2 ⊑ e ′
2

e1 e2 ⊑ e ′
1
e ′
2

ep-app

A ⊑ B e1 ⊑ e2

e1 : A ⊑ e2 : B
ep-anno

e1 ⊑ e ′
1

e2 ⊑ e ′
2

e1 , , e2 ⊑ e ′
1
, , e ′

2

ep-merge

e1 ⊑ e2

{l = e1} ⊑ {l = e2}
ep-rcd

e1 ⊑ e2

e1.l ⊑ e2.l
ep-proj

Fig. 10. Expression precision.

5.1 Conservative Extension, Static Gradual Guarantee and GTFL Encoding
Conservative Extension of the Static Discipline. We proved that if an expression is well-typed in

λM then it is well-typed in λM⋆
, which is shown in Theorem 5.1. Theorem 5.2 shows that for

any well-typed expressions, the dynamic semantics of λM can be encoded in λM⋆
. Note that a

fully-annotated expression means that all subexpressions are static, which are expressions in λM.

To be distinguishable, we use subscript m to represent typing or reduction from λM.

Theorem 5.1 (Eqivalence for fully-annotated terms (static)). Suppose that e is fully
annotated, Γ is well-formed and Γ , A are static. Γ ⊢ e ⇔m A if and only if Γ ⊢ e ⇔ A.

Theorem 5.2 (Eqivalence for fully-annotated terms (dynamic)). Suppose that e is fully
annotated, Γ is well-formed and Γ , A are static. If Γ ⊢ e ⇔m A then e ↪→∗

m v ⇐⇒ e ↪→∗ v.

Static Gradual Guarantee. λM⋆
comes with a static gradual guarantee [Siek et al. 2015b], defined

in terms of precision relations for types and expressions. We have already shown the precision for

types. The precision relation for expressions is shown in Figure 10. e1 ⊑ e2 means that e1 is more

precise than e2. Most of the rules are inductive and derived from the precision relation of types.

Theorem 5.3 shows that the static criteria of the gradual guarantee holds for the λM⋆
calculus: if e

is more precise than e ′, e has type A then e ′ has type B, and type A is more precise than B.

Theorem 5.3 (Static Gradual Guarantee of the λM⋆
Calculus). If e ⊑ e ′ and · ⊢ e ⇔ A

then ∃B, · ⊢ e ′ ⇔ B and A ⊑ B.

Encoding the Static Semantics of the GTFL≲ Calculus. We proved that λM⋆
can encode the type

system of the GTFL≲ calculus [Bañados Schwerter et al. 2021; Garcia et al. 2016]. In other words

every well-typed expression in the GTFL≲ calculus can be translated into a well-typed expression

in the λM⋆
calculus. The dynamic (lazy) semantics of λM⋆

does not preserve the (eager) semantics

of GTFL≲ . Thus we do not prove an operational correspondence result. An important difference in

the semantics is that the original semantics of GTFL≲ [Garcia et al. 2016] fails to preserve some

expected modular type invariants. However, as we discussed in Section 2, the λM⋆
calculus is

capable of smoothly dealing with the problem of modular type-based invariants.

The syntax and type system of GTFL≲ are shown in the Figure 11. Its expressions are standard

and the interesting part are the (gradual) types. Not only we have an unknown type ⋆, but also
we have gradual rows ({l : S, ⋆}), which represent rows with statically unknown extra fields. In

addition, the syntactic sugar {l : S, ∗} is used to represent either a normal multi-field record type

({l : S}) or gradual row types ({l : S, ⋆}). The judgment
¯Γ ⊢ t : S { e has an elaboration step from

GTFL≲ expressions t to λM
⋆
expressions e in the gray portion of the judgement. This elaboration
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Syntax

GTypes S F Int | S1 → S2 | {l : S} | {l : S, ⋆} | ⋆

Expressions t F x | i | λx : S. t | {l = t} | t.l | t : S | t1 t2

Term contexts
¯Γ F · | ¯Γ , x : S

¯Γ ⊢ t : S { e (Typing)

x : S ∈ ¯Γ

¯Γ ⊢ x : S { x
Aty-var

¯Γ , x : S1 ⊢ t : S2 { e

¯Γ ⊢ λx : S1. t : S1 → S2 { λx. e : |S1 | → |S2 |
Aty-abs

¯Γ ⊢ i : Int { i
Aty-i

S3 ≲ S1 ¯Γ ⊢ t2 : S3 { e2 ¯Γ ⊢ t1 : S1 → S2 { e1

¯Γ ⊢ t1 t2 : S2 { e1 e2
Aty-app

¯Γ ⊢ t : S { e

¯Γ ⊢ t.l : p̃roj(S, l) { e.l
Aty-prj

S ≲ S1 ¯Γ ⊢ t : S { e

¯Γ ⊢ (t : S1) : S1 { e : |S1 |
Aty-assert

¯Γ ⊢ ti : Si { ei

¯Γ ⊢ {li = ti} : {li : Si} { {l1 = e1} , , . . . , , {ln = en}
Aty-rec

p̃roj({l : S, li : Si, ∗}, l) = S p̃roj(⋆, l) = ⋆

p̃roj({li : Si, ⋆}, l) = ⋆ if l ∉ {¯li} p̃roj(S, l) = undef. otherwise

S1 ≲ S2 (Consistent Subtyping)

Int ≲ Int
ACS-z

⋆ ≲ S
ACS-dynl

S ≲ ⋆
ACS-dynr

S3 ≲ S1 S2 ≲ S4

S1 → S2 ≲ S3 → S4
ACS-arr

Si1 ≲ Si2

{li : Si1, lj : Sj, ⋆} ≲ {li : Si2, lk : Sk, ∗}
ACS-rcdr

Si1 ≲ Si2

{li : Si1, lj : Sj} ≲ {li : Si2, ∗}
ACS-rcdl

Fig. 11. Type System of GTFL≲ .

step is used to prove that λM⋆
can encode well-typed programs of GTFL≲ . Theorem 5.6 shows

that if a term t in GTFL≲ calculus is well-formed with type S and context
¯Γ and t elaborates to

λM⋆
expression e then e infers the type |S | and context | ¯Γ |. The definition of translation for types

and contexts are shown as follows.

Definition 5.4 (Type Translation). |S | translates the types of GTFL≲ to the types of λM⋆
.

| Int | = Int

| ⋆ | = ⋆

| (S1 → S2) | = |S1 | → |S2 |

| {li : Si} | = {l1 : |S1 |}& . . . & {ln : |Sn |}

| {li : Si, ⋆} | = {l1 : |S1 |}& . . . & {ln : |Sn |}& ⋆
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W⇐
k JA ⊑ BK = {{(w1, w2) | (w1 : A,w2 : B) ∈ E⇒k JA ⊑ BK}}

V⇒
k J⊤ ⊑ ⊤K = {{(Top, Top)}}

V⇒
k JInt ⊑ IntK = {{(i, i)}}

V⇒
k JA1 → A2 ⊑ B1 → B2K = {{(v1, v2) | ∀j ⩽ k, ty(v1) = A1 → A2, ty(v2) = B1 → B2

(e1, e2) ∈ E⇐j JA1 ⊑ B1K. (v1 e1, v2 e2) ∈ E⇒j JA2 ⊑ B2K}}
V⇒
k J{l : A} ⊑ {l : B}K = {{({l = v1}, {l = v2}) | (v1, v2) ∈ V⇒

k−1JA ⊑ BK}}
V⇒
k JA1&A2 ⊑ B1&B2K = {{((v11,,v12), (v21,,v22)) | (v11, v21) ∈ V⇒

k−1JA1 ⊑ B1K
∧ (v12, v22) ∈ V⇒

k−1JA2 ⊑ B2K}}
V⇒
k JA ⊑ ⋆K = {{(s1, g : ⋆) | ∃s2 ∈ g : ⋆∧ (s1, s2) ∈ V⇒

k Jty(s1) ⊑ ty(s2)K}}
∪ {{(v1,,v2, (g : ⋆)) | (v1, (g : ⋆)) ∈ V⇒

k−1Jty(v1) ⊑ ⋆K
∧ (v2, (g : ⋆)) ∈ V⇒

k−1Jty(v2) ⊑ ⋆K}}
∪ {{(g1 : ⋆, g2 : ⋆) | (g1, g2 : ⋆) ∈ V⇒

k Jty(g1) ⊑ ⋆K}}
R
⇔
k JA ⊑ BK = {{(r1, r2) | (r1 = err∗)∨ (r2 = erra)}}

∪ {{(w1, w2) | (w1, w2) ∈ W
⇔
k JA ⊑ BK}}

E
⇔
k JA ⊑ BK = {{(e1, e2) | ∀j < k, (e1 7−→j r1 ⇒ e2 7−→∗ r2

∧ (r1, r2) ∈ R
⇔
k−jJA ⊑ BK)}}

GJΓ1 ⊑ Γ2K = {{(σ1, σ2) | ∀k ⩾ 0, x ∈ dom(Γ1) ∩ dom(Γ2).

(σ1(x), σ2(x)) ∈ V⇒
k JΓ1(x) ⊑ Γ2(x)K}}

Γ1 ⊑ Γ2 ⊢ e1 ⊑ e2 ⇔ A ⊑ B ⇐⇒ ∀k ⩾ 0, (σ1, σ2) ∈ GJΓ1 ⊑ Γ2K. (σ1(e1), σ2(e2)) ∈ E
⇔
k JA ⊑ BK

s ∈ v

s ∈ s Top ∈ s

s ∈ g
s ∈ g : ⋆

s ∈ v1
s ∈ v1,,v2

s ∈ v2
s ∈ v1,,v2

Fig. 12. Logical relation.

Definition 5.5 (Context Translation). | ¯Γ | translates the typing context of GTFL≲ to the typing

context of λM⋆
.

| · | = ·
| ¯Γ , x : S | = | ¯Γ |, x : |S |

Theorem 5.6 (Well-typed Encoding of GTFL≲). If ¯Γ ⊢ t : S { e then | ¯Γ | ⊢ e ⇒ |S |.

5.2 Dynamic Gradual Guarantee
Section 2 illustrates that the standard formulation of the DGG and determinism (Theorem 4.3) are

incompatible. In this section we present a relaxed notion of the DGG that states that reduction is

monotone with respect to imprecision, but modulo ambiguity errors. Instead of syntactic precision

(defined in Figure 10), we use a semantic notion of precision [New et al. 2020]. To motivate this

choice, consider (syntactically) related expressions (1 , , True) : Int ⊑ (1 , , True) : ⋆. As the first
expression reduces to 1, according to the DGG, the second expression should reduce to a related

value. But it reduces to (1 , , True) : ⋆ which is not related by the syntactic relation.

To address this, we define a semantic notion of precision using a step-indexed logical relation,

shown in Figure 12. The interpretations of values and expressions are mutually defined using

four category of sets: for irreducible values at check modeW⇐
k JA ⊑ BK, for values at infer mode

V⇒
k JA ⊑ BK, for results at any mode R⇔

k JA ⊑ BK, and for expressions or computations at any

mode E⇔
k JA ⊑ BK. Each category is indexed by the step index k, the mode ⇔, and a pair of types.
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An irreducible valuew represents an irreducible expression that can be typed by the check mode,

and can be a value v or a raw lambda λx.e. A pair of irreducible values are related at A ⊑ B and

check mode, if the respective ascriptions to A and B yield related computations at infer mode.

Two values are related at the same base types, if the values are the same. Two values are related

at two function types, if their application to related expressions yield related computations. Note

that we use expressions as arguments (instead of values) in order to simplify the proofs. Two merge

values are related at two intersection types, if the first (resp. second) components of the merges are

related at the first (resp. second) components of the types.

The most complicated case is when the least precise type of the relation is ⋆. For this, we consider
three sub-cases. First, ordinary value s1 and dynamic value g : ⋆ are related if there exists a related

ordinary value s2 that can be projected from g : ⋆, denoted as s2 ∈ g : ⋆. The s2 ∈ g : ⋆ relation is

defined at the bottom of the Figure, and checks whether s2 is a subcomponent of g : ⋆. For example,

1 ∈ (1 , , True) holds, and Top ∈ v holds for any v. Going back to the first example in this section,

1 is now more precise than (1,,True) : ⋆ at Int ⊑ ⋆, because (1, 1) is related at Int ⊑ Int. Second, a
merge and a dynamic value are related if each component of the merge is related to the dynamic

value. For example, 1 : Int&⊤ is more precise than 1 : ⋆. Program 1 : Int&⊤ reduces to 1,,Top while

1 : ⋆ is a value. They are related because 1 is related to 1 : ⋆, and Topwith 1 : ⋆ (because Top ∈ 1 : ⋆).
Third, two dynamic values are related if the underlying first ground value is related to the second

dynamic value at the underlying ground type and ⋆. Although some cases do not reduce the index

k, the relation is well-founded because each recursive occurrence will eventually lower the index.

Two results are related to some mode if either (1) the first result is an error, (2) the second result

is an ambiguity error, or (3) the results are related irreducible values at the same mode. Note that

the relation for irreducible values at infer modeW⇒
k JA ⊑ BK is defined as the relation for values

at the same mode V⇒
k JA ⊑ BK. A pair of expressions (e1, e2) are related at k steps and some mode

⇔ if, when e1 reduces to a result in j steps, e2 must reduce to a related result at k− j steps within
the same mode. A pair of type environments are related if every variable maps to a related value at

infer mode.

Finally, we use notation Γ1 ⊑ Γ2 ⊢ e1 ⊑ e2 ⇔ A ⊑ B to denote that expression e1 is semantically

more precise than e2 under related type environments Γ1 ⊑ Γ2 at related types A ⊑ B and some

mode ⇔, if the expressions, closed under related value environments, are related expressions for

any number of steps k. For simplicity, if contexts are empty we use notation ⊢ e1 ⊑ e2 ⇔ A ⊑ B.
Armed with the logical relation and semantic precision, we can establish the fundamental

property that states that well-typed expressions related by the syntactic precision relation are

related by the semantic precision relation.

Theorem 5.7 (Fundamental Property).

(1) if Γ1 ⊢ e1 ⇒ A, Γ2 ⊢ e2 ⇒ B and e1 ⊑ e2 then Γ1 ⊑ Γ2 ⊢ e1 ⊑ e2 ⇒ A ⊑ B.
(2) if Γ1 ⊢ e1 ⇐ A, Γ2 ⊢ e2 ⇐ B and e1 ⊑ e2 then Γ1 ⊑ Γ2 ⊢ e1 ⊑ e2 ⇐ A ⊑ B.

The key lemma to prove this theorem is the ascription lemma, which states that the ascriptions

of related values to related types, yield related expressions.

Lemma 5.8 (Ascription Lemma). if (v1, v2) ∈ V⇒
k JA ′ ⊑ B ′K ∧ A ′ ≲ A ∧ B ′ ≲ B ∧ A ⊑ B

then (v1 : A, v2 : B) ∈ E⇒
k JA ⊑ BK.

Finally, based on the fundamental property, we can establish the DGG modulo ambiguity errors.

We use e ⇑ to denote that e diverges.

Theorem 5.9 (Dynamic Gradual Guarantee). Suppose that ⊢ e1 ⇔ A, ⊢ e2 ⇔ B and e1 ⊑ e2.
(1) e1 7−→∗ v1 then ((e2 7−→∗ v2 and ⊢ v1 ⊑ v2 ⇔ A ⊑ B) or e2 7−→∗ erra).
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(2) e1 ⇑ then e2 ⇑ or e2 7−→∗ erra.
(3) e2 7−→∗ v2 then ((e1 7−→∗ v1 and ⊢ v1 ⊑ v2 ⇔ A ⊑ B) or e1 7−→∗ err∗).
(4) e2 ⇑ then e1 ⇑ or e1 7−→∗ err∗.

Cases (1) and (2) are similar to the original DGG [Siek et al. 2015b] except for the fact that

the less precise expression can reduce to an ambiguity error. Case (2) may be counter-intuitive,

in particular when e2 reduces to erra, so we provide a simple example that illustrates this case.

Let Ω = ((λx.x x) (λx.x x)). Expression ((((1,,True) : Bool),,2) : Int),,Ω diverges, but less

precise expression ((((1,,True) : ⋆),,2) : Int),,Ω raises an ambiguity error. Cases (3) and (4) also

include instances where the most precise expression can reduce to an ambiguity error. To illustrate

case (3), consider value ((1 : ⋆),,2) : ⋆. The more precise expression ((1 : ⋆),,2) : Int reduces to
an ambiguity error. For case (4), (((1 : ⋆),,2) : ⋆),,Ω diverges but the more precise expression

(((1 : ⋆),,2) : Int),,Ω reduces to an ambiguity error.

6 Related Work
In Section 2 we already discussed the most closely related work. Thus here we will only briefly

summarize key points and discuss other closely related work.

Gradual Objects. Siek and Taha [2007] designed a calculus (Ob?

<:), which extendedOb<: [Abadi

and Cardelli 1996] with the unknown type ⋆. Although the unknown type ⋆ is powerful and general
for gradual typing, there is a significant loss of information with record types and subtyping. To

solve this, Garcia et al. [2016] proposed a new kind of gradual type called gradual row. A gradual row

type ({li : Si, ⋆}) has extra (statically) unknown fields in the record type. With gradual rows, Garcia

et al. [2016] defined a calculus with records and subtyping named GTFL≲ by using the Abstracting

Gradual Typing (AGT) methodology. GTFL≲ represents gradual typing derivations as intrinsically

typed terms to give dynamic semantics directly instead of elaborating to an intermediate language.

As Bañados Schwerter et al. [2021] point out GTFL≲ fails to enforce modular invariants, which

are expected from the static type discipline. They address the problems by refining the underlying

theory of AGT dynamic checking, and have also designed their calculus to be space efficient. Since

we employ a conventional lazy semantics, λM⋆
is not space efficient. Sekiyama and Igarashi [2019]

generalize gradual row types to variant types and row polymorphism [Wand 1994]. Compared to

GTFL≲ , their records are extensible. However, they drop subtyping, in favour of row polymorphism.

As we have shown, λM⋆
can encode the static semantics of GTFL≲ and gradual rows using single

field record types, intersection types and the unknown type ⋆. Furthermore, with λM⋆
, records are

extensible, by employing the merge operator as record concatenation, and subtyping is supported.

Thus, not only λM⋆
can encode multiple inheritance, but it can encode dynamic inheritance and

first-class traits/classes as well. Because AGT gradual rows have fixed size, there is no concatenation

and ambiguity is statically rejected (records with repeated labels are not allowed). Thus, it is not

possible to encode dynamic inheritance and first-class classes. Finally, casting in λM⋆
preserves

the modular invariants expected from the static type discipline naturally.

Based on their earlier work in Nom [Muehlboeck and Tate 2017], Muehlboeck and Tate [2021]

present MonNom: a gradual language supporting seamless transition between untyped structural

and typed nominal paradigms. They propose a novel approach to transitioning from untyped

structural objects to nominal objects. Precision between types is restricted as any type is more

precise than itself or the unknown type, disallowing precision between different partially untyped

types. Precision between expressions is complex, as it enables the correlation of untyped structural

code with nominal code. The authors provide proof for both gradual guarantees and type safety.

Unlike λM⋆
, MonNom does not support dynamic inheritance and first-class traits/classes. Instead
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MonNom’s focus is on improving the performance of more conventional (gradual) OOP languages.

In the future we hope to learn from Nom and MonNon to improve the performance of λM⋆
.

First-Class Classes and Traits. Many dynamically-typed languages support first-class classes/traits,

including Racket [Flatt et al. 2006] or JavaScript. To type first-class classes, Takikawa et al. [2012]

extended Racket with a gradual type system, called TFCC, for first-class classes. TFCC consists of

two parts: an untyped portion and a typed portion of the language. The interactions between the

two portions are mediated by contracts. Row polymorphism [Wand 1994] is used to type mixins.

Compared to λM⋆
, TFCC mixes typed and untyped modules instead of allowing fine-grained

gradual typing at the level of expressions. TFCC can have fully typed modules, dynamically typed

modules and these modules can interoperate with each other. However TFCC cannot have a module

that mixes static and dynamically typed expressions. In contrast the form of gradual typing in

λM⋆
is more fine-grained and it works at the level of expressions. Moreover, λM⋆

is a lower level

and simpler language, since it is basically a lambda calculus extended with merges and single label

records. So, high-level constructs like classes/traits are encodable in terms of simpler, more atomic

constructs. In contrast, TFCC is significantly more complex, as it has a built-in notion of classes,

and requires both a form of row polymorphism and subtyping for modelling first-class classes.

Some statically typed calculi support first-class classes, but do not support gradual typing. Tagged

objects are used to type first-class classes by Lee et al. [2015]. SEDEL was proposed by Bi and

Oliveira [2018] to type first-class traits. The type system of SEDEL is based on disjoint intersection

types [Oliveira et al. 2016] and disjoint polymorphism [Alpuim et al. 2017]. In SEDEL traits are

elaborated into a target calculus with the merge operator and disjoint intersection types. The later

CP language [Zhang et al. 2021] also adopts a similar approach to typed-first class traits.

Gradual Typing with Intersection Types. Castagna and Lanvin [2017] developed a gradual typing

systemwith union and intersection types using set-theoretic types. They show how to lift definitions,

such as subtyping, from non-gradual types to gradually typed ones. There are two main parts: a

gradually-typed language with its type system, and a cast calculus. The dynamic semantics is given

in the cast calculus. In later work, Castagna et al. [2019] improved the work of Castagna and Lanvin

[2017] with a blame calculus style dynamic semantics and blame labels. An important difference to

this line of work is that λM⋆
includes a merge operator, which brings significant complications,

such as the issue of ambiguity or type safety in the presence of subtyping in merges.

7 Conclusion and Future Work
This paper presented a calculus, called λM⋆

, that unifies two type-directed mechanisms: gradual

typing and the merge operator. We prove that λM⋆
is type sound, deterministic and satisfies the

gradual guarantee. λM⋆
is expressive, and it can encode gradual rows and the GTFL≲ calculus

using intersection types and the merge operator. In addition λM⋆
has extensible records via the

merge operator and it can encode first-class classes/traits and dynamic inheritance following an

existing encoding by Bi and Oliveira [2018]. This brings λM⋆
closer to dynamically typed languages,

such as JavaScript, which are common targets for practical implementations of gradual typing.

There are still several important gaps between λM⋆
and languages such as TypeScript. In

particular λM⋆
in purely functional, and omits imperative features like references [Toro and

Éric Tanter 2020], as well as other common features such as polymorphism [Ahmed et al. 2011].

References will require some further study. Although there is already some work integrating

references and polymorphism in a TDOS with gradual typing [Ye and Oliveira 2023], merges have

not been considered. An issue that is important to study is related to the notion of object identity,

which most OOP languages rely on. In our work, due to our coercive semantics, we essentially

create proxy objects around existing objects. However proxy objects may have a different object
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identity. We expect to be able to address this issue by building on existing research on transparent
proxies [Keil et al. 2015], which aims at addressing such concerns with proxy objects.

On the more theoretical side, it will be interesting to study a general framework for type-directed

mechanisms and look at integrating other type-directed mechanisms such as type classes [Wadler

and Blott 1989] or implicits [Oliveira et al. 2010].

An important question that we have not touched in this paper is performance. There are at least

three points that deserve further study in the future. Firstly, we are interested in exploring a variant

of λM⋆
with either threesomes [Siek andWadler 2009], or an eager semantics for higher-order casts.

Both of these can help avoid the accumulation of type annotations, which are known to cause time

and space inefficiencies [Herman et al. 2010]. Secondly, in its current form, all applications in the

TDOS are flexible. Since applications in the TDOS model the semantics of a source gradual language,
they allow mismatched (but consistent) types between arguments and functions, thus requiring

casting. To address this performance drawback, a possible solution is to introduce strict forms of

applications, alongside flexible applications, where the type of the argument must exactly match the

expected input type of the function. In this way casting can be avoided for strict applications. This

would be somewhat analogous to optimization techniques used in OOP languages, where some

dynamically dispatched method calls can be optimized to statically dispatched method calls. Adding

strict applications could be complemented with further optimizations that removes unnecessary

annotations such as in (λx. x : Int → Int) (1 : Int). Finally, runtime ambiguity detection is costly. It

is possible to avoid runtime ambiguity detection by forbidding merges with unknown types. But

this would be quite restrictive. A better solution would be to detect static merges (merges without

components with unknown types) and employ an optimized version of casting without ambiguity

detection. This should be possible because, for static merges, all ambiguity can be statically detected.
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