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Probabilistic programming languages have recently gained a lot of attention, in particular due to their
applications in domains such as machine learning and di�erential privacy. To establish invariants of interest,
many such languages include some form of static checking in the form of type systems. However, adopting
such a type discipline can be cumbersome or overly conservative.

Gradual typing addresses this problem by supporting a smooth transition between static and dynamic
checking, and has been successfully applied for languages with di�erent constructs and type abstractions.
Nevertheless, its bene�ts have never been explored in the context of probabilistic languages.

In this work, we present and formalize GPLC, a gradual source probabilistic lambda calculus. GPLC includes
a binary probabilistic choice operator and allows programmers to gradually introduce/remove static type
–and probability– annotations. The static semantics of GPLC heavily relies on the notion of probabilistic
couplings, as required for de�ning several relations, such as consistency, precision, and consistent transitivity.
The dynamic semantics of GPLC is given via elaboration to the target language TPLC, which features a
distribution-based semantics interpreting programs as probability distributions over �nal values. Regarding
the language metatheory, we establish that TPLC–and therefore also GPLC– is type safe and satis�es two of
the so-called re�ned criteria for gradual languages, namely, that it is a conservative extension of a fully static
variant and that it satis�es the gradual guarantee, behaving smoothly with respect to type precision.
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1 INTRODUCTION

In a nutshell, probabilistic programming languages are traditional programming languages that, on
top of their regular constructs, o�er the possibility of sampling values from probability distribu-
tions [Gordon et al. 2014; van de Meent et al. 2018]. They �nd applications in a wealth of di�erent
areas, ranging from more traditional application domains such randomized algorithms [Motwani
and Raghavan 1995] and cryptography [Goldwasser and Micali 1984] to more novel application do-
mains such as di�erential privacy [Dwork and Roth 2014] and machine learnings [Claret et al. 2013;
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Ghahramani 2015]. These latter have led to a remarkable resurgence of probabilistic programming
in the past years, with the development of a growing number of new probabilistic programming
systems [Goodman et al. 2008; Goodman and Stuhlmüller 2014; Kiselyov 2016; Le et al. 2017; Pfe�er
2010; Tran et al. 2017].
To establish certain invariants of interest, programming languages traditionally incorporate

some form of typing, backed up by a type checking phase. Depending on the moment in which
type checking occurs, it is classi�ed either as static —when taking place during compilation—, or
as dynamic —when it takes place during runtime—, each of them having their own strengths and
weaknesses. Concretely, programming languages with static typing allows detecting errors (i.e.
invariant violations) at an early stage, but are not �exible enough for rapid prototyping. On the
other hand, programming languages with dynamic typing accommodate better to changes, but
present slower runtimes.
Gradual typing [Siek and Taha 2006] represents an e�ective alternative for integrating the

bene�ts of static and dynamic typing at the same time, by allowing a smooth transition all along
the spectrum. To do so, it introduces imprecise (a.k.a. gradual) types, which represent types possibly
partially known at compile time. Imprecise types can range from fully precise static types (such as
Real → Bool), to the fully unknown (or imprecise) type, written ?, with partially precise types (such
as Real → ?) in-between. At compile time, a gradual language typechecks programs optimistically,
based on the notion of type consistency, (e.g., accepting the application of a function expecting
an argument of type Real → ? and receiving an argument of type ? → Bool,) while the runtime is
responsible for detecting (and reporting) any violation of such assumptions (e.g., if the received
argument happens to have concrete type Bool → Bool).

Gradual typing has been successfully applied to programming languages with diverse constructs
and typing disciplines. Some relevant features include �rst-class classes [Takikawa et al. 2012],
mutable references [Herman et al. 2010; Siek and Taha 2006; Siek et al. 2015c; Toro and Tanter
2020], e�ects as primitives [Bañados Schwerter et al. 2016], tagged and untagged unions [Toro
and Tanter 2017], labeling operations (for reasoning about information �ow) [Azevedo de Amorim
et al. 2020; Disney and Flanagan 2011; Fennell and Thiemann 2013; Toro et al. 2018], and algebraic
data types [Malewski et al. 2021]. However, it is an open question whether the bene�ts of gradual
typing carry over to probabilistic programming languages.
In this work, we give a positive answer to this question by, on the one hand, designing, to the

best of our knowledge, the �rst gradual probabilistic language and, on the other hand, establishing
a set of metatheorethic results, natural to all gradual languages.

First, we present SPLC, a probabilistic λ-calculus that extends ordinary λ-calculus with a (binary)
probabilistic choice operator and acts as the static end of our gradual language. It features a
big-step semantics relating programs to the probability distribution of �nal values and to better
accommodate the derivation of the gradual variant, its type system presents some distinguished
features such as the presence of ascriptions, partial functions dom and cod over types, and explicit
type equality. Furthermore, equality over types is semantic (instead of syntactic).

Second, we introduce GPLC, our source gradual language, whose derivation from SPLC is justi�ed
using the Abstracting Gradual Typing (AGT) methodology, a systematic approach for deriving
gradual languages based on abstract interpretation [Garcia et al. 2016]. For the so-derived notions
of type consistency and type and term precision, we also provide alternative —more amenable to
automation— characterizations, based on the notion of probabilistic couplings [Deng and Du 2011].
In e�ect, probabilistic couplings are a fundamental ingredient, behind all our technical development.

Notably, GPLC allows unknown probabilities not only at the type level, but also at the term level
(in probabilistic choices). This yields an increased expressivity and �exibility —characteristic of all
gradual languages— and also the opportunity of leveraging the language for program re�nement.
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Third, we de�ne the dynamic semantics of our gradual language by translating GPLC into the
target gradual language TPLC. The runtime semantics of TPLC incorporates the required evidence
to con�rm or discard the optimistic assumptions made by GPLC type system. In turn, this requires
adapting gradual types to encode unknown probabilities through symbolic variables, which are
constrained by well-formedness conditions.
Finally, to formally validate our language design, we establish three fundamental properties of

GPLC. First, we prove that it is a conservative extension of SPLC. Second, we show that it satis�es
type safety. Lastly, we show that it behaves smoothly with respect to precision, a property known
as the gradual guarantee [Siek et al. 2015b].

Altogether, this provides the �rst steps into the theoretical foundations of gradual probabilistic
programming, and serves as starting point for developing gradual variants of more specialized,
domain speci�c, probabilistic languages, e.g., as used for di�erential privacy [Reed and Pierce 2010].

Paper Organization. The rest of the paper is organized as follows. Section 2 discusses the motivation
and some key design decisions and challenges behind our probabilistic gradual language. Section 3
presents the probabilistic lambda calculus (SPLC) acting as the static end of the gradualization.
Section 4 develops the source gradual language (GPLC) and Section 5 the target language (TPLC),
together with the metatheory. Section 6 overviews the related work and Section 7 concludes. Full
de�nitions and proofs of the main results can be found in the supplementary material.

2 OVERVIEW

We next discuss the motivation behind a gradual probabilistic language through a concrete use
case and summarize some key aspects and challenges behind the design of our gradual probabilistic
language.

2.1 A Gradual Probabilistic Language: Why?

Assume we must develop a web application for a company, in particular, the login endpoint. To
authenticate a user, we must verify that the user remains active in the company, information that
is provided by an external web service (exposed by a foreign library). As usual, we support both
production and development modes, where in development mode we replace the external web
service with a local function, conveniently de�ned for developing and testing purposes.

Under these requirements, we quickly prototype the following (untyped) program, written in a
Scala-like language:

1 def isUserActive(user) = if (prod) externalCall(user) else localCall(user)

2 def login(user , pass) = if (isUserActive(user)) /* test password */ else false

Probabilistic modeling. The company now requires that the login endpoint have a 95% uptime
(availability). However, after some research, we learn that the external web service externalCall

has only a 90% uptime, returning a 503 Service Unavailable error when down. Written in such an
untyped language, the above program is unable to capture this uptime information, let alone detect
the impossibility to comply with the login requirements.

As a �rst step to address this problem, we can adopt a typed language that includes distribution
types. Loosely speaking, distribution types represent probability distributions of “simpler” types,
and can crisply model uptime information. For instance, the return type of externalCall shall
now be represented by {Bool

90
100 , Error503

10
100 }, and the return type of login by {Bool

95
100 , Error503

5
100 }.

Furthermore, we can implement a localCall function compatible with the uptime requirement of
the login endpoint, as follows:

3 def localCall(user: String): {Bool
95
100 , Error503

5
100 } = true ⊕ 95

100

new Error503 ()
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A program of the form m ⊕p n is known as a probabilistic choice between m and n, and behaves like m

with probability p and like n with probability 1-p.1

Limitations of static typing. Adopting a static typing for our probabilistic language would be cum-
bersome, as it would require inserting type annotations everywhere, or else extending the language
with a type inference mechanism. In either case, the static typing can be overly conservative,
rejecting (at compile time) programs that may indeed go right at runtime. For example, declar-
ing the return types of functions externalCall and localCall as argued above ({Bool

90
100 , Error503

10
100 }

and {Bool
95
100 , Error503

5
100 }, respectively), would render function isUserActive ill-typed as the two

branches of the conditional in the function body would have di�erent types. Note that, even though
the uptime of the external web service is incompatible with the uptime requirements of the lo-
gin endpoint, we still would like to have a program able to execute in development mode (and
in production mode, with minor modi�cations in typing annotation, if uptime requirements are
reconciled).

Gradual typing at rescue. Gradual typing addresses this problem by supporting a smooth transition
between static and dynamic typing, introducing imprecision on static types via the unknown anno-
tation ?.2 Intuitively, an unknown type (resp. probability) ? represents any type (resp. probability).
For example, using gradual (distribution) types we can partially annotate the program to assert
only a subset of function uptimes:

4 val externalCall: ? -> {Bool
90
100 , Error503

10
100 } = ...

5 def isUserActive(user: ?): ? = if (prod) externalCall(user) :: ? else

֒→ localCall(user) :: ?

6 def login(user: ?, pass: ?): {Bool
95
100 , Error503

5
100 } = if (isUserActive(user)) ...

To render isUserActive well-typed, we also had to ascribe both its conditional branches to the
unknown type (written :: ?), since the conditional branches have di�erent (fully static) types.
The type checker of a gradual language treats type equality optimistically, through the notion

of consistency. Consistency between gradual types tests the plausibility of equality between any
of the static types they represent. For instance, gradual type ? -> Bool is consistent with Int -> ?,
written ? -> Bool ∼ Int -> ?, because (during runtime) they can both represent, e.g., the fully static
type Int -> Bool.
In view of this optimistic treatment of equality, the above program is accepted statically as the

unknown type ? is (trivially) consistent with every other type. If the application is in develop-
ment mode, then the login endpoint runs successfully. On the contrary, if the application is in
production mode, a runtime error is raised. This is because, even though {Bool

90
100 , Error503

10
100 } ∼ ?

and ? ∼ {Bool
95
100 , Error503

5
100 }, {Bool

90
100 , Error503

10
100 } ≁ {Bool

95
100 , Error503

5
100 }. Said otherwise, con-

sistency is not transitive. Therefore, gradual languages incorporate runtime checks to detect any
potential violation of the optimistic assumptions performed statically during type checking.
Finally, note that we can increase the program precision, e.g., changing the return type of

isUserActive from ? to {Bool
95
100 , Error503

5
100 }, which would make the program ill-typed, failing thus

at compile time.
Besides for this enhanced expressivity, one can also employ our gradual probabilistic language

for program re�nement purposes. To illustrate this application, assume that the external service
externalCall is now required to have an uptime of at least 95%. This can be modelled by declaring

1A probabilistic choice m ⊕p n can be readily simulated (in an approximate manner) by all programming languages that
include the commonplace primitive random(), returning an (approximately) uniform value in the [0, 1] interval. It su�ces
to take program if (random() <= p) m else n.
2A fully untyped program is considered to have unknown annotations everywhere.
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its return type as {Bool
95
100 , Bool?, Error503?}. In contrast to the above example where ? represented

unknown types, here, both occurrences of ? represent unknown (possibly di�erent) probabilities,
which together with 95

100
must sum up to 1.

Furthermore, assume that the external service originally relied on a single server of 90% uptime
(server1) to keep track of active users. To reach the desired uptime of (at least) 95%, the service
provider decides to buy a new—very costly– server of 98% uptime (server2). A naive implementation
of the service would simply dispense with server1 and rely only on server2 to respond queries.
However, this would negatively impact on server2 liftime, diminishing the return of the performed
investment. To avoid this problem and still bene�t from server1, a possible solution consists in,
upon each query, probabilistically choosing either server to respond the query. The fundamental
question left to answer is whether this design would result in an overall (expected) uptime of at
least 95%. To answer this question, we can consider the following program:

7 val server1: ? -> {Bool
90
100 , Error503

10
100 } = ...

8 val server2: ? -> {Bool
98
100 , Error503

2
100 } = ...

9 def externalCall(user: ?): {Bool
95
100 , Bool?, Error503?} = server1(user) ⊕?

֒→ server2(user)

where symbol ? in the probabilistic choice ⊕? also represents an unknown probability. Our gradual
language correctly typechecks this program and its runtime informs us about the feasibility of
the proposed externalCall design. For concreteness, assume that for any user, server1 (resp. server2)
responds true with probability 90

100
(resp. 98

100
) and error503 with the complementary probability. The

instrumentation of the language runtime introduces symbolic variables to represent unknown prob-
abilities; say ωBool, ωError503 and ωchoice represent the unknown probabilities encoded by ? respec-
tively in Bool?, Error503? and ⊕?. The runtime semantics tells us that invoking externallCall with any
user returns true with probability 95

100
+ωBool and error503 with probability 2

100
+

(
98

100
− 90

100

)
ωchoice,

where the symbolic variables are constrained by formulas 95

100
+ ωBool + ωError503 = 1 and

90

100
ωchoice +

98

100
(1 − ωchoice) =

95

100
+ ωBool.3 Any probability ωchoice ≤ 37.5

100
yields a valid solution

of the equation system, yielding a valid re�nement of externallCall and validating the proposed
design.

2.2 Design Decisions and Challenges

When designing our source (GPLC) and target (TPLC) gradual probabilistic languages, we faced
several design decisions and challenges.

Where to introduce imprecision. In most traditional gradual typing calculi, imprecision is introduced
via the unknown type ?. To gain expressivity and �exibility, in this work we allow imprecision at
the type level as well as the probability level. For example, given the fully static distribution type
{Bool

9
10 , Error503

1
10 }, we can introduce imprecision either in probabilities, e.g. {Bool ? , Error503

1
10 },

in the underlying types, e.g. { ?
9
10
, Error503

1
10 }, or in both. Note that there is no need to introduce

the unknown distribution as it can be represented by the gradual distribution type {??}. Interestingly,
unknown probabilities are particularly useful for expressing probability bounds. As hinted above,
we can use type {Bool

95
100 , Bool?, Error503?} to represent a service with an uptime of at least 95%.

On the other hand, type {Bool?, Error503
5
100 , Error503?} models an uptime of at most 95%.

Tracking dependencies of probability annotations. When dealing with unknown probabilities, as in
type {Bool

9
10 , Bool?, Error503?}, the gradual language must ensure that the concrete probabilities

3Formally, the instrumentation of the runtime semantics yields a handful of further constraints, but altogether they are
equivalent to the considered subset.
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r ∈ R, b ∈ B, x ∈ Var, p ∈ [0, 1], τ ∈ Type, T ∈ DType

τ ::= Real | Bool | τ → T (simple types)
T ::= {{τ

pi
i | i ∈ I}} (distribution types)

m,n ::= v | v w | let x =m in n |m ⊕p n (terms)
m :: T | v :: τ | if v thenm else n | v + w

v,w ::= x | r | b | (λx : τ .m) (values)

Fig. 1. Syntax of SPLC.

they represent induce only well-de�ned static distribution types, with a total probability of 1. This
requirement induces implicit dependencies and gradual probabilities are thus elaborated to fresh
variables (ω) constrained by formulas, e.g. of the form 9

10
+ ω1 + ω2 = 1.

Ascribing to distribution types. One of the fundamental features of GPLC is the possibility of
ascribing programs to distribution types. For example, a program f = (λx : ?.x) :: {(Real →

?)
1

2 , (? → Bool)
1

2 } behaves as a function that takes a number as argument with probability 1

2
, and

as a function that returns a boolean also with probability 1

2
. Reducing an application to f and

correctly propagating the respective type information is not a trivial task. Intuitively, our approach
consists in “pushing” the real argument into each (compatible) type in the distribution. For instance,
the reduction of program f 1 proceeds, informally, as follows:

f 1 7→∗ {(λx : ?.x) :: (Real → ?)
1

2 1, (λx : ?.x) :: (? → Bool)
1

2 1} 7→∗ {1 :: ?
1

2 , error
1

2 }

Couplings as a central tool. De�ning some key relations between distribution types is another

technical challenge. For instance, should we consider distribution type {(Real → ?)
1

2 , (? → Real)
1

2 }

consistent with {(? → Bool)
1

3 , (Real → ?)
2

3 }? Is {Real
1

2 , ?
1

2 } more precise than {Bool
2

3 , ?
1

3 }? To
de�ne these (and other) relations over distribution types we heavily rely on the notion of prob-
abilistic coupling, which yields a canonical lifting from relations over pair of sets to probability
distributions over the sets.

3 SPLC: STATIC LANGUAGE

In this section, we present SPLC, a statically-typed lambda calculus, extended with a probabilistic
choice operator, which is the starting point —static end— of our gradualization e�ort. The static
semantics of SPLC is based on that of λ⊕ from [Lago and Grellois 2017], with two major di�erences:
SPLC features a semantic (rather than syntactic) equality between types and also allows type
ascriptions. As for the dynamic semantics, programs are interpreted as probability distributions
over �nal values.

3.1 Syntax

The syntax of SPLC is presented in Figure 1, comprising its type and term languages.

Type language. The type language contains two (mutually de�ned) syntactic categories: simple
types and distributions types. A simple type, ranged over by τ , can be the type Real of real numbers,
the type Bool of Boolean values, or a function type of the form τ → T , where T is a distribution
type. A distribution type, ranged over by T , is a multi-set of pairs comprised by a simple type τ and
a probability p in the interval [0, 1]. Intuitively, we use {{τpii | i ∈ I}} to denote a distribution type
in which simple type τi occurs with probability pi , for each i in the (non-empty and �nite) subsetI

of the natural numbers. For instance, distribution type {{Real
1

4 ,Real
1

4 ,Bool
1

2 }} represents Real with
probability 1

4
+

1

4
=

1

2
and Bool with probability 1

2
. Notationwise, we sometimes omit the index set
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Γ ⊢s v : τ , Γ ⊢s m : T

(Tr)
Γ ⊢s r : Real

(Tb)
Γ ⊢s b : Bool

(Tx)
Γ(x) = τ

Γ ⊢s x : τ
(Tv)

Γ ⊢s v : τ

Γ ⊢s v : {{τ 1}}

(Tλ)
Γ, x : τ ⊢s m : T ⊢ τ

Γ ⊢s λx : τ .m : τ → T
(T:: τ )

Γ ⊢s v : τ ′ τ ′ =s τ ⊢ τ

Γ ⊢s v :: τ : {{τ 1}}

(Tapp)
Γ ⊢s v : τ

1
Γ ⊢s w : τ

2
dom(τ

1
) =s τ2

Γ ⊢s v w : cod(τ
1
)

(T⊕)
Γ ⊢s m : T

1
Γ ⊢s n : T

2

Γ ⊢s m ⊕p n : p ·T
1
+ (1 − p) ·T

2

(Tlet)

Γ ⊢s m : {{τ
pi
i | i ∈ I}}

∀i ∈ I. Γ, x : τi ⊢s n : Ti

Γ ⊢s let x =m in n :
∑
i ∈I pi ·Ti

(T:: T )
Γ ⊢s m : T ′ T ′

=s T ⊢ T

Γ ⊢s m :: T : T

dom(τ → T ) = τ cod(τ → T ) = T p · {{τ
pi
i | i ∈ I}} = {{τ

p ·pi
i | i ∈ I}}

dom(τ ) undef. otherwise cod(τ ) undef. otherwise

{{τ
pi
i | i ∈ I}} + {{τ

pj
j | j ∈ J}} = {{τ

pi
i | i ∈ I}} ∪ {{τ

pj
j | j ∈ J}} if

∑
i ∈I

pi +
∑
j ∈J

pj ≤ 1

Fig. 2. Type system of SPLC (excerpt).

I and simple write {{τpii }}. Finally, note that distribution types —as the name suggests— represent
probability distributions (over simple types) and therefore, well-typed programs are associated
distribution types whose probabilities sum up to 1 (this restriction is formally captured by the
notion of type well-formedness de�ned in Section 3.1).

Term language. Terms, ranged over bym,n , and values, ranged over by v,w , are mutually de�ned.
A term can be a value v , an applications v w between two values, a let expression let x =m in n ,
a probabilistic choice m ⊕p n , a term ascription m :: T , a value ascription v :: τ , a conditional
if v thenm else n, or an addition v + w between two values. Note that terms are de�ned in A-
normal form [Sabry and Felleisen 1993], which pushes all the reasoning about probabilities to the
let construct. Randomization is introduced though probabilistic choices: programm ⊕p n behaves
like (i.e. reduce to)m with probability p and like n with probability 1 − p.

3.2 Type System

Figure 2 presents the type system of SPLC. Type rules are de�ned using a pair of mutually-de�ned
judgments: one for values and another for computations. Judgment Γ ⊢s v : τ (resp. Γ ⊢s m : T ) for
values (resp. computations) denotes that value v (resp. termm) has simple type τ (resp. distribution
type T ) under type environment Γ, which maps variables to simple types.
Type rules for values are standard, only a few rules deserving special attention. For example,

rule (Tv) allows assigning a value of simple type τ also distribution type {{τ 1}} (e.g. program 1

can be typed as {{Int1}}). Also, note that rules (Tλ), (T:: τ ) and (T:: T ) require all program type
annotations to be well-formed. We say that a distribution type {{τpii | i ∈ I}} is well-formed, written
⊢ {{τ

pi
i | i ∈ I}}, if

∑
i ∈I pi = 1 and simple type τi is well-formed for every i ∈ I. A simple type τ

is well-formed, written ⊢ τ , if it is either a base type (Real or Bool) or a function type τ → T , where
τ and T are well-formed.

A particularity of SPLC’s type system is that it relies on a semantic —rather than syntactic— notion

of type equality (=s ), as used in rules (T:: τ ), (Tapp) and (T:: T ). For example, {{Real
1

2 ,Bool
1

4 ,Bool
1

4 }} =s

{{Real
1

3 ,Real
1

6 ,Bool
1

2 }} because 1

2
=

1

3
+

1

6
and 1

4
+

1

4
=

1

2
. Formally, type equality is given by rules:
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m ⇓s V V ::= {{v
pi
i | i ∈ I}} (distribution values)

v ⇓s {{v
1}}

m[v/x] ⇓s V

(λx : τ .m) v ⇓s V

m ⇓s V1 m ⇓s V2

m ⊕p n ⇓s p · V1 + (1 − p) · V2

m ⇓s {{v
pi
i | i ∈ I}} ∀i ∈ I. n[vi/x] ⇓s Vi

let x =m in n ⇓s
∑
i ∈I

pi · Vi v :: τ ⇓s {{v
1}}

m ⇓s V

m :: T ⇓s V

Fig. 3. Runtime semantics of SPLC (excerpt).

Real =s Real Bool =s Bool

τ
1
=s τ2 T

1
=s T2

τ
1
→ T

1
=s τ2 → T

2

∀τ ∈ supp(T
1
). T

1
(τ ) = T

2
(τ )

T
1
=s T2

where supp(T ) represents the support of distribution type T de�ned by supp(T ) = {τ | τp ∈

T ∧ p > 0} and T (τ ) represents the probability that T assigns to a simple type τ , de�ned by
{{τ

pi
i | i ∈ I}}(τ ) =

∑
i ∈I |τi=sτ

pi .
Following the approach of Garcia et al. [2016], to ease the gradualization process we make all

type relations and type functions explicit. For (Tapp) rule, we use partial functions dom and cod

to extract the domain and codomain of a function type, respectively. Also we make explicit the
fact that the type of the argument should be equal to the domain type of the function. Rule (T⊕)
combines the distribution typesT

1
andT

2
of sub-expressionsm and n, by �rst scalingT

1
by p andT

2

by 1 − p , and then adding the resulting scaled distributions types together. Scaling p ·T is de�ned
pointwise, i.e. by scaling all the probabilities in the distribution type by p ; the addition of two (sub)
distribution types T

1
+T

2
is de�ned as the union of the two multi-sets, provided that the sum of

the resulting probabilities do not exceed 1. For instance, consider program 1 ⊕ 1

3

true. Expression 1

is typed as {{Real1}} and true as {{Bool1}}. After scaling both distribution types and adding them

together, the resulting distribution type is 1

3
· {{Real1}} + 2

3
· {{Bool1}} = {{Real

1

3 ,Bool
2

3 }}. Rule (Tlet)
propagates the type ofm to n as follows. Ifm has a distribution type T , then for each type and
probability τp ∈ T , n is type checked under an extended environment where x is typed as τ . The
resulting type of the let expression is computed by adding each distribution type of n scaled by its
corresponding p .
Note that, as expected, well-typed terms are assigned well-formed types, only.

Lemma 3.1 (Type well-formedness). For every valuev , every termm , every simple type τ ∈ Type,

every distribution type T ∈ DType and every environment Γ,

(1) If Γ ⊢s v : τ , then ⊢ τ (2) If Γ ⊢s m : T , then ⊢ T

3.3 Dynamic Semantics

We endow SPLC with a big-step distribution-based semantics that relates programs to probability
distributions over �nal values [Lago and Zorzi 2012a], following a call-by-value reduction strategy.
Concretely, judgmentm ⇓s V denotes that expressionm reduces to a distribution value V, i.e. a
probability distribution over values. The reduction relation is formally de�ned in Figure 3.

A value v reduces to a Dirac distribution, i.e. a distribution that assigns probability 1 to v (and 0
to any other value). A function application reduces by substituting the argument for the variable
binder in the function body. A probabilistic choice �rst reduces its pair of branches and then returns
the weighted sum of the so obtained distribution values. The scaling and addition operators for
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r ∈ R, b ∈ B, x ∈ Var, p ∈ [0, 1], ρ ∈ GProb, σ ∈ GType, µ ∈ GDType

ρ ::= p | ? (gradual probabilities)

σ , δ ::= Real | Bool | σ → µ | ? (gradual simple types)
µ ,ν ::= {{σ

ρi
i | i ∈ I}} (gradual distribution types)

m, n ::= v | v w | let x = m in n | m ⊕ρ n (terms)
m :: µ | v :: σ | if v then m else n | v + w

v,w ::= x | r | b | λx : σ .m (values)

Fig. 4. Syntax of GPLC.

distribution values are de�ned analogously to those for type distributions (Fig. 2). For example,

program (1 ⊕ 1

2

2) ⊕ 2

3

true reduces to distribution value {{1
1

3 , 2
1

3 , true
1

3 }}. The reduction of a let–

expression let x =m in n is more involved and proceeds as follows. First, subtermm is reduced to
a distribution value {{vpii | i ∈ I}}. Second, subterm n is reduced by substituting each vi (i.e. each
possible outcome ofm) for x , resulting in distribution values Vi . The entire let–expression then
reduces to the weighted sum

∑
i ∈I

pi ·Vi . Finally, ascribed terms reduce by removing type ascription.

SPLC is type safe, meaning that every well-typed closed expression reduces to a distribution value.
Formally, this follows from three results of GPLC that we establish in Section 4 (Theorem 4.13) and
Section 5 (Theorems 5.11 and 5.15).

4 GPLC: GRADUAL SOURCE LANGUAGE

We now present GPLC, our gradual source probabilistic language. GPLC is derived from SPLC and
its design is justi�ed by the Abstracting Gradual Typing (AGT) methodology [Garcia et al. 2016].
The section is structured as follows. First, we introduce GPLC syntax, specifying, in particular,
where we support (im)precision. Second, we present GPLC type system and de�nine consistency,
discussing why a naive approach to consistency is bound to fail. Third, we de�ne type and term
precision, proving that GPLC satis�es the gradual guarantee and that its type system conservatively
extends that of SPLC. The dynamic semantics of GPLC is de�ned through an elaboration to a target
language, introduced in Section 5.4

4.1 Syntax

The syntax of GPLC is presented in Figure 4. We introduce imprecision in the language by extend-
ing probabilities and simple types with the unknown annotation ?. The unknown probability ?
represents any probability in the interval [0, 1], and similarly, the unknown simple type ? represents
any static simple type. We do not need an (explicit) unknown distribution type as it can already be
encoded by the singleton distribution type {{??}} (of unknown simple type, with unknown probabil-
ity). Notationwise, we use ρ to range over gradual probabilities (GProb), σ , δ to range over simple
gradual types (GType), and µ ,ν to range over gradual distribution types (GDType).

Design driven by AGT. To justify some of the design decisions behind GPLC, we follow, in parallel,
the Abstracting Gradual Typing (AGT) methodology [Garcia et al. 2016]. In short, the idea behind
AGT is that starting from a speci�cation of the meaning of gradual types in terms of sets of
static types, we can systematically derive all relevant notions of the gradual language, which by
construction, will enjoy a set of desired properties (to be discussed later). Unfortunately, some of
the so-obtained de�nitions turn out not to be very amenable to implementation. To address this
limitation, we also derive alternative (equivalent) de�nitions, with a more operational nature.

4We use the blue color for source languages and the red color for target languages.
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Γ ⊢ v : σ , Γ ⊢ m : µ

Γ ⊢ v : σ

Γ ⊢ v : {{σ 1}}

Γ, x : σ ⊢ m : µ ⊢ σ

Γ ⊢ λx : σ .m : σ → µ

Γ ⊢ v : σ σ ∼ δ ⊢ δ

Γ ⊢ v :: δ : {{δ1}}

Γ ⊢ v : σ Γ ⊢ w : δ δ ∼ d̃om(σ )

Γ ⊢ v w : c̃od(σ )

Γ ⊢ m : µ Γ ⊢ n : ν

Γ ⊢ m ⊕ρ n : ρ · µ + (1−ρ ) · ν

Γ ⊢ m : {{σ
ρi
i | i ∈ I}} ∀i ∈ I. Γ, x : σi ⊢ n : µi

Γ ⊢ let x = m in n :
∑
i ∈I ρi · µi

Γ ⊢ m : µ µ ∼ ν ⊢ ν

Γ ⊢ m :: ν : ν

Fig. 5. Type system of GPLC (excerpt).

As just hinted, we start providing themeaning of gradual types and probabilities via concretization
functions that map gradual simple types, distribution types and probabilities to non-empty sets of
static simple types, distribution types and probabilities, respectively.

γp : [0, 1] ∪ {?} → P([0, 1])

γp (?) = [0, 1] γp (p) = {p}

γT : GDType → P(DType)

γT ({{σ
ρi
i | i ∈ I}}) = {{{τ

pi
i | i ∈ I}} | ∀i ∈ I. τi ∈ γτ (σi ) ∧ p ∈ γp (ρi)}

γτ : GType → P(Type)

γτ (σ → µ ) = {τ → T | τ ∈ γτ (σ ) ∧T ∈ γT (µ )}

γτ (?) = Type γτ (Real) = {Real} γτ (Bool) = {Bool}

The concretization functions crisply captures the intuition behind imprecision: The meaning
of the unknown gradual probability is any probability in the interval [0, 1] and the meaning of
the unknown gradual simple type is any static simple type. The meaning of a gradual distribution
type is computed inductively, by computing the meaning of both gradual simple types and gradual
probabilities.

4.2 Type System

Figure 5 shows the type system of GPLC, which is obtained from the type system of the static
language (Figure 2) by replacing static elements with their gradual counterpart. Let us brie�y
describe these liftings. The lifting d̃om : GType ⇀ GType (resp. c̃od : GType ⇀ GDType) of type
function dom is standard: d̃om(σ → µ ) = σ , d̃om(?) = ?, and d̃om is unde�ned elsewhere. Function
cod is de�ned analogously. The lifting of the minus (resp. product) operation between probabilities,
also denoted by − (resp. ·), returns ? if either of the operands is ?:

ρ1 op ρ2 =

{
ρ1 op ρ2 if ρ1, ρ2 ∈ [0, 1]

? otherwise
op ∈ {·,−}

The lifting of the scaling of distribution types, also denoted by ·, is de�ned pointwise, in terms of
the lifting of the product between probabilities: ρ · {{σ

ρi
i | i ∈ I}} = {{σ

ρ ·ρi
i | i ∈ I}}. The lifting of

the sum between distribution types, also denoted by +, coincides with the original operation (see
Fig. 2).5

The lifting of type equality, called type consistency and denoted by∼ in GPLC, plays a fundamental
role in gradual languages. It allows soundly handling the notion of (im)precision, which is conve-

niently introduced via type ascriptions. For example, program 1⊕ 1
2
true :: {{??}} :: {{Real

2

3 ,Bool
1

3 }}

is (optimistically) accepted by the gradual type system of GPLC because {{Real
1

2 ,Bool
1

2 }} ∼ {{??}}

5Formally, side condition
∑
i∈I ρi +

∑
j∈J ρj ≤ 1 is de�ned following the AGT approach, i.e. it holds if there exist

concretizations pi ∈ γp (ρi) and pj ∈ γp (ρj) such that
∑
i∈I pi +

∑
j∈J pj ≤ 1.
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1(Real → {{?1}})
1

2

1 (? → {{Bool1}})
1

3

2(? → {{Real1}})
1

2

2 (Real → {{?1}})
2

3

α11 =
1

3

α12 =
1

6

α22 =
1

2

Fig. 6. Probability spli�ing to justify consistency between gradual distribution types.

and {{??}} ∼ {{Real
2

3 ,Bool
1

3 }}. Following AGT, we de�ne type consistency by the existential lifting
of type equality =s :

De�nition 4.1 (Type consistency, by AGT). For any pair of gradual simple types σ , δ ∈ GType and
any pair of gradual distribution types µ ,ν ∈ GDType, we de�ne:

σ ∼AGT δ if and only if ∃τ
1
∈ γτ (σ ), τ2 ∈ γτ (δ ). τ1 =s τ2

µ ∼AGT ν if and only if ∃T
1
∈ γT (µ ),T2 ∈ γT (ν ). T1 =s T2

In words, two gradual types are consistent if there exist static simple types in their concretizations
that are equal. The problem with this de�nition is that is not practical, as it can depend on sets of
in�nitely many types. For gradual simple types, this can be partially addressed by stating that ? is
consistent with every other gradual simple type, but for gradual distribution types the problem is
more challenging as probabilities must also be taken into account.

4.3 Consistency, Refined

We are thus interested in an inductive de�nition of consistency. To illustrate the main idea behind
our alternative characterization, consider the pair of gradual distribution types

µ = {{(Real → {{?1}})
1

2 , (? → {{Real1}})
1

2 }} and ν = {{(? → {{Bool1}})
1

3 , (Real → {{?1}})
2

3 }} ,

represented on the left and right hand side of Figure 6 (for concreteness, we assume that the

elements of µ and ν are enumerated by index setI = {1, 2}, thus, e.g., (Real → {{?}})
1

2 corresponds
to the simple type of index 1 in µ ). Intuitively, µ and ν will be consistent if (and only if) there exists
a splitting of the probabilities 1

2
,
1

2
from µ and 1

3
,
2

3
from ν that relates the simple types in µ with

the simple types in and ν as follows:

(1) Type Real → {{?1}} in µ is consistent with both ? → {{Bool1}} and Real → {{?1}} in ν . This
means that 1

2
, the probability of Real → {{?1}} in µ , must be split into two, i.e. 1

2
= α11 + α12,

where α11 (resp. α12) represents the probability of relating Real → {{?1}}, the �rst simple type
in µ , with ? → {{Bool1}} (resp. Real → {{?1}}), the �rst (resp. second) simple type in ν .

(2) Type ? → {{Real1}} in µ is consistent only with Real → {{?1}} in ν . Therefore, the probability
of ? → {{Real1}} in µ need not be split, leading to 1

2
= α22.

(3) Similarly, type ? → {{Bool1}} in ν is consistent only with Real → {{?1}} in µ , so 1

3
= α11.

(4) Finally, type Real → {{?1}} in ν is consistent with Real → {{?1}} and ? → {{Real1}} in µ ,
resulting in 2

3
= α12 + α22.

Since the system of four equations so derived is feasible, witnessed e.g. by solution α11 =
1

3
, α12 =

1

6
and α22 =

1

2
, we can conclude that µ and ν are consistent. This thought process constitutes a lifting

of the consistency relation between simple types to distribution types through couplings [Deng and
Du 2011], tool that has already been exploited e.g. in the context of probabilistic bisimulation [Segala
and Lynch 1995] and veri�cation of cryptographic properties [Barthe et al. 2009].

De�nition 4.2. (Relation lifting) Assume that A = {{a
pi
i | i ∈ I}} and B = {{b

qj
j | j ∈ J}} are

multi-set representations of discrete probability distributions over setsA and B, respectively (that is,
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ai ∈ A and pi ∈ [0, 1] for all i ∈ I, bj ∈ B and qj ∈ [0, 1] for all j ∈ J, and
∑

i ∈I pj =
∑

j ∈J qj = 1).
Moreover, let R ⊆ A × B be a relation between A and B. We say that A and B are related by the
lifting of R, written LR (A ,B), i� there exist C = {{αi j ∈ [0, 1] | i ∈ I ∧ j ∈ J}} such that for all
i ∈ I and all j ∈ J,

(1) pi =
∑

j ∈J αi j ∧ pj =
∑

i ∈I αi j , and (2) αi j > 0 ⇒ ai R bj

We write C ⊢ A R B to denote that C is a witness of the relation LR (A ,B), i.e. to denote the
conjunction between conditions 1 and 2 above. Moreover, any C satisfying (only) condition 1 is
called a coupling between A and B.

Type equality via couplings. To make a uniform treatment of type equality (=s ) in SPLC and type
consistency (∼) in GPLC, we start by rede�ning the type equality in SPLC in terms of couplings,
via relation =:

Real = Real Bool = Bool

τ
1
= τ

2
T
1
= T

2

τ
1
→ T

1
= τ

2
→ T

2

L=
(
T
1
,T

2

)

T
1
= T

2

The last rule above says that two distribution types are equal if there exists a coupling that justi�es
the lifting of equality on simple types to distribution types (note that the= symbol in the rule premise
refers to equality over simple types, while the = symbol in the conclusion refers to equality over

distribution types). Using this rule we can, e.g., derive that {{Real
1

2 ,Bool
1

2 }} = {{Real
1

3 ,Real
1

6 ,Bool
1

2 }}

because the set of formulas 1

2
= α11 + α12,

1

2
= α23,

1

3
= α11,

1

6
= α12 and

1

2
= α23 is satis�able (by

solution α11 =
1

3
, α12 =

1

6
, α23 =

1

2
).

As expected, this alternative de�nition of equality is equivalent to the original from Section 3.

Lemma 4.3 (Alt. characterization of eqality). For all pairs of simple types τ
1
, τ

2
∈ Type and

distributions types T
1
,T

2
∈ DType,

τ
1
=s τ2 i� τ

1
= τ

2
and T

1
=s T2 i� T

1
= T

2

Armed with this new de�nition of equality based on couplings we proceed to de�ne consistency.

Type consistency, a straightforward approach. A straightforward approach to de�ne consistency in
GPLC consists in (rule-wise) lifting the de�nition of type equality = in SPLC, and extending it with
rules stating that ? is consistent with any gradual simple type. An excerpt of the resulting set of
rules would be:

? ∼ σ Real ∼ Real

σ
1
∼ σ

2
µ
1
∼ µ

2

σ
1
→ µ

1
∼ σ

2
→ µ

2

L∼
(
µ
1
, µ

2

)

µ
1
∼ µ

2

According to this de�nition (in particular, by the last rule), establishing the consistency, e.g.,
between gradual distribution types {{σ ρii | i ∈ I}} and {{σ

ρj
j | j ∈ J}} requires exhibiting a coupling

between them. The problem here is that probabilities in either of the distribution types can be
only partially known, that is, ρi could be ? for some i ∈ I, rendering formula

∑
j ∈J αi j = ? even

ill-de�ned. A �rst approach to tackle this problem consists in lifting these formulas (from the static
setting) to the gradual setting. Note, however, that this lifting cannot be done for each formula
independently because the “same” ? will probably occur in multiple formulas. We should then lift
all related formulas at the same time, but this still su�ers from scoping problems because unknown
probabilities (represented by ?) must remain visible outside the formulas lifting: At runtime, we
need to carry witness information about consistency, where gradual probabilities “�ow” across
reductions (see the let and probabilistic choice reduction rules in Fig. 3). To tackle this problem, we
introduce (fresh) symbolic variables representing unknown probabilities, and analyze the existence
of couplings for this symbolic representation of distribution types.
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σ , δ ∈ FSType, µ ,ν ∈ FDType, ω ∈ TVar, Φ ∈ Formula

ω ::= ⟨α, l, r⟩ (tagged variables)
ϱ ::= ω | r (symbolic probabilities)

σ , δ ::= Real | Bool | σ → µ | ? (formula simple types)

µ ,ν ::= Φ ▷ {{σ
ϱi

i | i ∈ I}} (formula distribution types)
Φ ::= φ = φ | φ ≤ φ | Φ ∧ Φ (formulas)
φ ::= ϱ | φ + φ | φ − φ | φ · φ | φ/φ (expressions)

Fig. 7. Formula types.

Type consistency via symbolic li�ings. To represent unknown probabilities as (free) variables in the
set of formulas de�ning the lifting of consistency (from gradual simple types to gradual distribution
types), we extend the syntax of GPLC with formula simple types (FSType) and formula distribution

types (FDType) as shown in Figure 7. Intuitively, a formula type is the same as an ordinary gradual
type, except that (1) unknown probabilities are replaced by variables, and (2) distribution types
are guarded by formulas (like in re�nement types). Formally, a symbolic probability ϱ is either
a constant r or a tagged variable. A tagged variable ω represents a symbolic variable α (to be
interpreted over the [0, 1] interval), which for convenience is tagged by a pair of natural numbers
l and r. For simplicity, we adopt the following notation conventions. First, we use ω .α,ω .l and
ω .r to access the �rst, second and third component of ω , respectively. Second, given ω = ⟨α, i, j⟩,
we use ω(i, j) as a shorthand for α . Third, in order not to clutter formulas, we sometime write ω for
ω .α (e.g., ω1 +ω2 = 1 for ω1.α +ω2.α = 1). Finally, when clear from the context, we refer to tagged
variables simply as variables. An expression φ represents either a symbolic probability ϱ or algebraic
operations (addition, subtraction, multiplication or division) between symbolic probabilities. A
formula Φ is either a comparison between two expressions or the conjunction of other two formulas.
Formula simple types are de�ned similarly to gradual simple types (including the ? type), except that
the codomain of function types are formula distribution types. Formula distribution types are now
multi-sets of pairs of formula simple types and symbolic probabilities, closed under a formula Φ.

Let us introduce some handy notation for the rest of the presentation. First, given formula Φ, we
use FV (Φ) to denote the set of (free) tagged variables occurring in Φ. Second, given a set of symbolic
probabilities {ϱi | i ∈ I}, we use TV ({ϱi | i ∈ I}) to denote the subset of tagged variables, only
(i.e. the result of �ltering out static probabilities). Lastly, given formula Φ over tagged variables
ω1, . . . ,ωn , we use sat(Φ) to denote that Φ is satis�able, i.e. as a shorthand for ∃ω1, . . . , ∃ωn . Φ.

There is a canonical lifting from gradual types to formula gradual types. For example, the

gradual distribution type {{Int
1

3 ,Bool?, ??}} can be represented by the formula distribution type
Φ ▷ {{Intω1,Boolω2, ?ω3 }}, where Φ = ω1 =

1

3
∧ ω2 ∈ [0, 1] ∧ ω3 ∈ [0, 1] ∧ ω1 + ω2 + ω3 = 1, and

ϱ ∈ [r1, r2] is syntactic sugar for r1 ≤ ϱ ∧ ϱ ≤ r2. Formally, the lifting is captured by three mutually
recursive functions that act over gradual simple types, gradual probabilities and gradual distribution
types respectively as follows:

⌈ · ⌉ : GType → FSType

⌈Real⌉ = Real ⌈Bool⌉ = Bool ⌈?⌉ = ? ⌈σ → µ ⌉ = ⌈σ ⌉ → ⌈µ ⌉

⌈ · ⌉· : GProb × TVar → Formula

⌈p⌉ω = (ω = p) ⌈?⌉ω = (ω ∈ [0, 1])

⌈ · ⌉ : GDType → FDType

⌈{{σ
ρi
i | i ∈ I}}⌉ =

( ∧
i ∈I ⌈ρi⌉ωi ∧

∑
i ∈I ωi = 1

)
▷ {{⌈σi ⌉

ωi | i ∈ I}} ωi = ⟨αi , i, i⟩, αi is fresh
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To give the inductive de�nition of type consistency (and other forthcoming notions), we require
a variant of the traditional notion of coupling. This variant di�ers from the traditional de�nition
(see Def. 4.2) in that it operates over symbolic probability distributions, where probabilities are
given by logical variables rather than contrete numbers, and these variables are subject to given
constraints.

De�nition 4.4. (Coupling over symbolic distributions) Assume that A = {{a
pi
i | i ∈ I}} and

B = {{b
qj
j | j ∈ J}} are (multi-set representations of) symbolic discrete probability distributions over

setsA and B. Moreover, letR ⊆ A×B be a relation betweenA and B. GivenC = {{αi j | i ∈ I∧j ∈ J}},
constraintψ1 over pi , and constraintψ2 over pj , we use C ⊢ A ψ1 R Bψ2 to denote the conjunction
of conditions 1 and 2 from Def. 4.2 (i.e. that C is a “traditional” coupling between A and B),
together with ψ1 ∧ ψ2. We also use LR

(
A ψ1,Bψ2

)
to denote formula ∃{pi | i ∈ I} ∪ {pj | j ∈

J} ∪ {αi j | i ∈ I ∧ j ∈ J}. C ⊢ A ψ1 R Bψ2 .

Note that LR
(
A ψ1,Bψ2

)
requires the existence not only of a coupling C, but also of concretiza-

tions of (symbolic distributions) A and B, respectively satisfying ψ1 and ψ2. Typically, ψ1 and
ψ2 will require that probabilities sum up to 1. Like in De�nition 4.4, in the rest of the presenta-
tion we allow ourselves some abuse of notation and write ∃{x1, x2, . . . , xn} as a shorthand for
∃x1. ∃x2. . . . ∃xn , and similarly for ∀{x1, x2, . . . , xn}.

Armed with the above notion of relation lifting, we can de�ne the lifting of any relation R over
gradual simple types to gradual distribution types as:

LR

(
Φ
1
▷ {{σ

ϱi
i | i ∈ I}},Φ

2
▷ {{σ

ϱj
j | j ∈ J}}

)
i� LR

(
{{σ

ϱi
i | i ∈ I}}Φ1, {{σ

ϱj
j | j ∈ J}}Φ2

)

Now, we can readily provide an inductive characterization of consistency, by simply lifting the
de�nition of equality:

De�nition 4.5 (Type consistency, inductively). The consistency relation ∼ between gradual types
and formula distribution types (µ ,ν ∈ FDType) is de�ned as follows:

Real ∼ Real Bool ∼ Bool σ ∼ ? ? ∼ σ

σ
1
∼ σ

2
µ
1
∼ µ

2

σ
1
→ µ

1
∼ σ

2
→ µ

2

⌈µ
1
⌉ ∼ ⌈µ

2
⌉

µ
1
∼ µ

2

L∼
(
µ ,ν

)

µ ∼ ν

As expected, the inductive de�nition of consistency (Def. 4.5) coincides with the one yielded by
AGT (Def. 4.1):

Lemma 4.6 (Eqivalence of consistencies). For any pair of gradual simple types σ , δ ∈ GType

and any pair of gradual distribution types µ ,ν ∈ GDType,

σ ∼AGT δ i� σ ∼ δ and µ ∼AGT ν i� µ ∼ ν

Type well-formedness. Another relevant aspect of GPLC type system is that, like SPLC type system,
programs are assigned well-formed types, only. The de�nition of well-formedness for gradual
types is similar to that of static types, except that a gradual distribution type is well-formed i� it is
plausible (rather than certain) that its underlying probabilities sum up to 1, and moreover, all its
tagged variables occur in the closing formula:
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De�nition 4.7 (Type well-formedness). The well-formedness of gradual and formula types (denoted
by symbol ⊢) is de�ned as follows:

⊢ Real ⊢ Bool ⊢ ?

⊢ σ ⊢ µ

⊢ σ → µ

⊢ ⌈µ ⌉

⊢ µ

TV ({ϱi | i ∈ I}) ⊆ FV (Φ) sat
(
Φ ∧

∑
i ∈I ϱi = 1

)
∀i ∈ I. ⊢ σi

⊢ Φ ▷ {{σ
ϱi
i | i ∈ I}}

Note that while the �rst line of rules de�nes well-formedness for both gradual simple and gradual
distribution types, the second line de�nes well-formedness for formula distribution types, only.
Well-formedness for formula simple types follows the same rules as for gradual simple types (�rst
four rules above).

Lemma 4.8 (Type well-formedness). For any value v, any term m, any gradual simple type

σ ∈ GType and gradual distribution type µ ∈ GDType from GPLC, and any environment Γ,

(1) If Γ ⊢ v : σ , then ⊢ σ (2) If Γ ⊢ m : µ , then ⊢ µ

An appealing property of the operator ⌈·⌉ lifting gradual distribution types to formula distribution
types is that it preserves well-formedness:

Lemma 4.9 (Preservation of type well-formedness). For any gradual simple type σ ∈ GType,

and any gradual distribution type µ ∈ GDType,

(1) If ⊢ σ , then ⊢ ⌈σ ⌉ (2) If ⊢ µ , then ⊢ ⌈µ ⌉

4.4 Refined Criteria

The re�ned criteria for gradual languages [Siek et al. 2015b] establish a set of distinguishing
properties for such class of languages, where (only) two such properties are related to the static
semantics: the static gradual guarantee, which guarantees that typing is monotone with respect
to imprecision, and the conservative extension of the static discipline, which guarantees that every
fully-statically-annotated well-typed term in the gradual language is also typeable in the static
language (and vice versa). To establish the �rst property, the static gradual guarantee for GPLC, we
�rst need to de�ne a notion of precision between types, and subsequently between terms.

Type precision. AGT casts the de�nition of type precision in terms of set containment on the
concretization of the gradual types, i.e.G1 ⊑ G2 (meaning that gradual typeG1 is at least as precise
as gradual typeG2) if and only ifγ (G1) ⊆ γ (G2). Nevertheless, in the presence of gradual distribution
types, the de�nition based on set containment is not satisfactory as it assumes a syntactic equality

between set elements. For instance, while {{Real1}} ⊑ {{Real
1

2 ,Real
1

2 }} is expected to hold since
the involved pair of types are equal (under our semantic view of equality), a naive de�nition of
precision would reject this relation. Therefore, we adopt an alternative de�nition of precision
by [Lennon-Bertrand et al. 2022], which can be successfully applied when equality is not syntactic.

De�nition 4.10 (Type precision). For any pair of gradual simple types σ , δ ∈ GType and any pair
of gradual distribution types µ ,ν ∈ GDType,

(1) σ ⊑AGT δ if and only if ∀τ
1
∈ γτ (σ ). ∃τ2 ∈ γτ (δ ). τ1 = τ2.

(2) µ ⊑AGT ν if and only if ∀T
1
∈ γT (µ ). ∃T2 ∈ γT (ν ). T1 = T2.

Like for consistency, the de�nition of precision above, despite being sound, is unpractical. We
thus present an alternative, inductive characterization. This inductive characterization is rather
standard, only the case of (gradual and formula) distribution types deserving special attention;
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⌈µ
1
⌉ ⊑ ⌈µ

2
⌉

µ
1
⊑ µ

2

∀ FV (Φ
1
). Φ

1
=⇒ ∃ FV (Φ

2
) ∪ {ωi j | i ∈ I ∧ j ∈ J}.

{{ωi j | i ∈ I ∧ j ∈ J}} ⊢ {{σ
ϱi
i | i ∈ I}}

Φ
1 ⊑ {{σ

ϱj
j | j ∈ J}}

Φ
2

Φ
1
▷ {{σ

ϱi
i | i ∈ I}} ⊑ Φ

2
▷ {{σ

ϱj
j | j ∈ J}}

Fig. 8. Type precision in GPLC (excerpt).

m ⊑ n µ ⊑ ν

m :: µ ⊑ n :: ν p ⊑ p ρ ⊑ ?

m ⊑ m′ n ⊑ n′ ρ ⊑ ρ ′

m ⊕ρ n ⊑ m′ ⊕ρ′ n
′

Fig. 9. Term precision in GPLC (excerpt).

see Figure 8. Two gradual distribution types are in precision if their lifting to formula distribution
types are in precision. Precision for formula distribution types is slightly di�erent from consistency.
Loosely speaking, formula distribution types µ

1
and µ

2
are related by precision i� every solution

that makes the probabilities of µ
1
sum up to 1 can be “completed” to form a coupling between µ

1

and µ
2
that witnesses the lifting of precision. Intuitively, the de�nition is designed to reproduce the

quanti�er structure of De�nition 4.10.
To illustrate how this new de�nition of type precision works, consider the following examples:

• {{Real
1

2 , ?
1

2 }} ⊑ {{Real
1

3 ,Real
1

6 , ?
1

2 }} holds because ω11 + ω12 + ω13 =
1

2
∧ ω21 + ω22 + ω23 =

1

2
∧ ω11 + ω21 =

1

3
∧ ω12 + ω22 =

1

6
∧ ω13 + ω23 =

1

2
is satis�able by the solution set

{0 ≤ ω11 ≤
1

3
, 0 ≤ ω12 ≤

1

6
, 0 ≤ ω13 ≤

1

2
, 0 ≤ ω21 ≤

1

3
, 0 ≤ ω22 ≤

1

6
}.

• {{Real
1

2 , ?
1

2 }} ̸⊑ {{Bool
2

3 , ?
1

3 }} does not hold because ω12 =
1

2
∧ω21 +ω22 =

1

2
∧ω21 =

2

3
∧ω12 +

ω22 =
1

3
is not satis�able.

As already hinted, this inductive de�nition of precision is equivalent to De�nition 4.10:

Lemma 4.11 (Eqivalence of type precision). For any pair of gradual simple types σ , δ ∈ GType

and any pair of gradual distribution types µ ,ν ∈ GDType,

σ ⊑AGT δ i� σ ⊑ δ and µ ⊑AGT ν i� µ ⊑ ν

Term precision. Term precision is the natural lifting of type precision to the space of terms. Its
de�nition is rather standard, by induction in the term structure, as presented in Figure 9.

Metatheory. Armed with the de�nition of precision, we can now state the two fundamental proper-
ties that hold for the static semantics of GPLC. First, typeability is monotone w.r.t. imprecision:

Theorem 4.12 (Static Gradual Guarantee for GPLC). For every value v, every term m, every

gradual simple type σ and every gradual distribution type µ from GPLC,

(1) If ⊢ v : σ and m ⊑ n, then there exists δ such that ⊢ n : δ and σ ⊑ δ .

(2) If ⊢ m : µ and m ⊑ n, then there exists ν such that ⊢ n : ν and µ ⊑ ν .

Second, the static semantics of SPLC and GPLC are equivalent for fully-statically-annotated
terms:

Theorem 4.13 (Conservative extension of the static semantic). For every value v , every

termm , every simple type τ and every distribution type T from SPLC,

⊢s v : τ i� ⊢m : τ and ⊢s m : T i� ⊢m : T
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r ∈ R, b ∈ B, x ∈ Var, σ ∈ FSType, µ ∈ FDType

m,n ::= v | v w | let x =m in n |m ⊕
Φ

ϱ ϱ n | ξm :: µ (terms)
εv :: σ | if v thenm else n | v + w | errorµ

u := r | b | (λx : σ .m) (raw values)
v ,w ::= x | εu :: σ | errorσ (values)

V ::= {{v
ϱi
i | i ∈ I}} (distribution values)

Fig. 10. Syntax of TPLC (excerpt).

4.5 Dynamic Semantics

Traditionally, when designing gradual languages, the runtime semantics are not de�ned directly
over the gradual source language. The program is translated or elaborated into a cast calculus

program, inserting casts at the boundaries between static and dynamic typing, ensuring at runtime
that no static assumptions are violated. If a static assumption is violated, then a runtime error is
raised. This cast calculus is usually called the gradual target language. The dynamic semantics of
GPLC are no exception: taking inspiration from AGT, we elaborate GPLC into an evidence-based
gradual target language, where evidence play the role of casts that justify consistency judgments.
The gradual target language for GPLC, dubbed TPLC, is presented next.

5 TPLC: GRADUAL TARGET LANGUAGE

In this section, we introduce TPLC, an evidence-based target language for GPLC. We start by
presenting the static semantics, followed by the dynamic semantics, which relates programs to
probability distributions over values. Finally, we establish type safety and two re�ne criteria for
TPLC (dynamic counterparts of the re�ned criteria already established for GPLC): the gradual
guarantee, and that the language is a conservative extension of SPLC, its static counterpart.

5.1 Static Semantics

The static semantics of TPLC di�ers from GPLC in �ve key aspects: (1) we use formula distribution
types from the beginning, (2) consistency judgment are augmented with concrete type information
(called evidence) that justi�es judgment validity, (3) explicit ascriptions are incorporated along type
derivations to push all consistency judgments to the ascription type rules, (4) ascriptions carry their
underlying evidence to justify consistency transitivity at runtime, and (5) to simplify the reduction
rules and proofs, all values are ascribed.

Syntax. Figure 10 presents the syntax of TPLC. Types are the formula types from GPLC (see Fig. 7).
Terms are now annotated with formula simple types and formula distribution types introduced

in previous section. The probabilistic choice operatorm ⊕
Φ

ϱ1 ϱ2n is now annotated with variables
ϱ1 and ϱ2 closed by formula Φ, corresponding to the probability of taking the left or right branch
respectively. Ascriptions εv :: σ and ξm :: µ are augmented with evidences, where ε is an evidence
for a formula simple type consistency judgment, and ξ for a formula distribution type consistency
judgment (both kind of evidences, to be de�ned later). A raw value is either a real number r , a
constant b or a lambda abstraction λx : σ .m . As previously mentioned, all values in GPLC become
ascribed values in TPLC. Therefore, a value v is either a variable x , an ascribed raw value u , or a
tagged error errorσ . Note that in constrast to classical gradual approaches, in TPLC error is also a
term, and can be either a redex (errorµ ) or a value (errorσ ). The main reason for this is to simplify
the metatheory when accounting for probabilistic branches that may fail during runtime. Errors
also carry type information related to the expected type of the expression in order to establish type
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Γ ⊢ v : σ , Γ ⊢m : µ , Γ ⊢ Φ ▷ V : µ

(Gerrσ )
⊢ σ

Γ ⊢ errorσ : σ
(Gerrµ )

⊢ µ

Γ ⊢ errorµ : µ
(G::σ )

Γ ⊢ v : σ ε ⊢ σ ∼ δ ⊢ δ

Γ ⊢ εv :: δ : {{δ1}}

(Gapp)
Γ ⊢ v : σ → µ Γ ⊢w : σ

Γ ⊢ v w : µ
(Glet)

Γ ⊢m : Φ ▷ {{σ
ϱi
i | i ∈ I}}

∀i ∈ I. Γ, x : σi ⊢ n : µi

Γ ⊢ let x =m in n : Φ ⊢
∑
i ∈I ϱi · µi

(G::µ )
Γ ⊢m : µ ξ ⊢ µ ∼ ν ⊢ ν

Γ ⊢ ξm :: ν : ν
(G⊕)

Γ ⊢m : µ Γ ⊢ n : ν sat
(
Φ ⇒ ϱ1 + ϱ2 = 1

)

Γ ⊢m ⊕
Φ

ϱ1 ϱ2 n : Φ ⊢ ϱ1 · µ + ϱ2 · ν

(GV)
∀i ∈ I. ⊢ vi : σi

Γ ⊢ Φ ▷ {{vi
ϱi | i ∈ I}} : Φ ▷ {{σ

ϱi
i | i ∈ I}}

ϱ · Φ ▷ {{σ
ϱi
i | i ∈ I}} = Φ ∧

(∧
i ∈I ωi = ϱ · ϱi

)
▷ {{σ

ωi
i | i ∈ I}} ωi = ⟨αi ,ωi .l,ωi .r⟩ , αi fresh

Φ ⊢
∑
i ∈I Φi ▷ {{σ

ϱj
j | j ∈ Ji }} = Φ ∧

(∧
i ∈I Φi

)
∧
(∑

i ∈I
∑
j ∈Ji ϱj = 1

)
▷
⋃
i ∈I{{σ

ϱj
j | j ∈ Ji }}

Fig. 11. Type system of TPLC (excerpt).

safety, and can be removed in a real implementation. Finally, a distribution value V stands for a
distribution over values v .

Type System. The type system of TPLC is presented in Figure 11. Compared to GPLC, the only
rules that use consistency are the ascription rules, making all top-level constructors match in the
remaining type rules. Rule (G⊕) requires that the fact that formula Φ entails that probabilities ϱ1
and ϱ2 sum up to 1 be plausible. Note that formula Φ is also pushed as part of the constraints of the
resulting type —the weighted sum between the branch types. Similary, rule (Glet) scales each µi with
variable ϱi , soΦ is pushed to the resulting distribution type to close the type. Consistency judgments
are now justi�ed by some evidence, written ε ⊢ σ ∼ δ (for simple types) and ξ ⊢ µ ∼ ν (for
distribution types). Intuitively, evidences ε and ξ correspond to the most precise type information
that support the respective consistency judgment; we elaborate on this in Section 5.2.
The notion of consistency of formula types is de�ned in the same way as in GPLC:

De�nition 5.1 (Type consistency of formula types). Type consistency over simple (FSType) and
distribution (FDType) formula types is de�nes as follows:

Real ∼ Real Bool ∼ Bool σ ∼ ? ? ∼ σ

σ
1
∼ σ

2
µ
1
∼ µ

2

σ
1
→ µ

1
∼ σ

2
→ µ

2

L∼
(
µ ,ν

)

µ ∼ ν

The de�nition of well-formedness is de�ned identical to Def. 4.7, and omitted for brevity. Like in
SPLC and GPLC, all well-typed terms type check to well-formed formula types:

Lemma 5.2. For any value v , any term m , any formula simple type σ ∈ FSType and formula

distribution type µ ∈ FDType from TPLC, and any environment Γ,

(1) If Γ ⊢ v : σ , then ⊢ σ (2) If Γ ⊢m : µ , then ⊢ µ

5.2 Evidence

Following AGT, evidences are encoded as pairs of (gradual) types of the form ⟨G1,G2⟩. Intuitively,
each type of the pair corresponds to a type in the consistent judgment that the evidence shall
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justify, e.g. in ⟨G1,G2⟩ ⊢ G
′
1
∼ G ′

2
, G1 corresponds to G ′

1
and G2 to G ′

2
. Furthermore, each type in

the evidence is at least as precise as its corresponding type in the consistent judgment, i.e.G1 ⊑ G ′
1

and G2 ⊑ G ′
2
. When dealing with consistency (the gradual counterpart of equality), both types in

evidence coincide, and therefore evidence is represented by single types, namely

ε ::= σ (simple evidences) ξ ::= µ (distribution evidences)

A simple evidence ε (resp. distribution evidence ξ ) is just a formula simple type (resp. formula
distribution type) that justi�es a consistency judgment between two formula simple types (resp. two
formula distribution types). Formally, an evidence justi�es a consistency judgment if and only if
the evidence is more precise than both types:

De�nition 5.3 (Evidence). For all formula simple types ε ,σ , δ ∈ FSType and all formula distribu-
tion types ξ , µ ,ν ∈ FDType, we de�ne

ε ⊢ σ ∼ δ ⇐⇒ ε ⊑ σ ∧ ε ⊑ δ and ξ ⊢ µ ∼ ν ⇐⇒ ξ ⊑ µ ∧ ξ ⊑ ν

For instance, Real → Bool ⊢ Real → ? ∼ ? → Bool. Now we can justify the role of tags in tagged
variables. Consider judgment Φ ▷ {{σ

ωk
k

}} ⊢ Φ
1
▷ {{σ

ϱi
i }} ∼ Φ

2
▷ {{δ

ϱj
j }}. Tagged variables connect

evidence with their underlying types, i.e. type σ
k
justi�es that σi is consistent with δ j , because

ωk .l = i and ωk .r = j, where ωk .α is the weight of the connection between σi and δ j . Note that a
pair of simple types can be connected through multiple evidences.

As usual in gradual languages, consistency is not transitive, e.g. {{Real
2

3 ,Bool
1

3 }} ∼ {{??}} and

{{??}} ∼ {{Real
1

3 ,Bool
2

3 }}, but {{Real
2

3 ,Bool
1

3 }} ≁ {{Real
1

3 ,Bool
2

3 }}. Therefore, during runtime, evi-
dence is combined to try to justify transitivity. If the combination succeeds, the resulting (and
possible more precise) evidence justi�es the resulting judgment from transitivity, otherwise a
runtime error is raised. The combination of evidence is formalized using the consistent transitivity
operator, which coincides with the meet (least upper bound) operator w.r.t. the precision order, i.e.

ε
1
◦ ε

2
= ε

1
⊓ ε

2
and ξ

1
◦ ξ

2
= ξ

1
⊓ ξ

2

The meet operator is partial. For simple types, it is de�ned by the following clauses:

Real ⊓ Real = Real Bool ⊓ Bool = Bool ? ⊓ σ = σ σ ⊓ ? = σ

σ
1
→ µ

1
⊓ σ

2
→ µ

2
= σ

1
⊓ σ

2
→ µ

1
⊓ µ

2

For distribution types, the de�nition follows the same approach as used for de�ning consistency
and precision, in terms of the existence of couplings that justi�es the lifting, but explicitly capturing
all witness couplings. Formally,

µ
1
⊓ µ

2
= W⊓(µ1, µ2)

whereW : (FSType×FSType⇀ FSType)×FDType×FDType⇀ FDType returns (a characterization
of) all couplings that witness the lifting, and is de�ned as:

Wf (Φ1
▷ {{σ

ωi
i | i ∈ I}},Φ

2
▷ {{δ

ωj

j | j ∈ J}}) =

Φ ▷ {{ f (σi , δ j )
ωi j | (i, j) ∈ I × J ∧ (σi , δ j ) ∈ dom(f )}} ωi j fresh

provided ∃FV (Φ
1
) ∪ FV (Φ

2
) ∪ {ωi j | (i, j) ∈ I × J}. Φ

′
∧ Φ, where Φ

′
= ∀i ∈ I. ∀j ∈ J. ωi j .l =

ωi .l ∧ωi j .r = ωj .r, Φ = {{ωi j | (i, j) ∈ I × J}} ⊢ {{σ
ωi
i | i ∈ I}}

Φ
1 R {{δ

ωj

j | j ∈ J}}
Φ
2 and σi R δ j

i� (σi , δ j ) ∈ dom(f ).6

6Note that Φ can be cast as a Formula by takingK = {(i , j) | (σi , δj ) ∈ dom(f )} as the index set of the witness couplings.
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As an example of the meet between formula distribution types, observe that (ω1 =
1

2
∧ ω2 =

1

2
) ▷ {{(Real → ?)ω1, (? → Real)ω2 }} ⊓ (ω3 =

1

3
∧ ω4 =

2

3
) ▷ {{(Real → ?)ω3, (? → Real)ω4 }} =

(ω11+ω21 = ω1∧ω22 = ω2∧ω11 = ω3∧ω21+ω22 = ω4)▷{{(Real → ?)ω11, (Real → Real)ω12, (Real →

Real)ω21, (? → Real)ω22 }} becauseω11+ω21 = ω1∧ω22 = ω2∧ω11 = ω3∧ω21+ω22 = ω4 is satis�able
by the solution set {ω11 =

1

2
,ω21 =

1

6
,ω22 =

1

3
}.

Importantly, the meet between a pair of types is at least as precise as either of them (and therefore,
a valid evidence for their consistency).

Lemma 5.4 (Monotonicity of the meet operator). For all formula simple types σ
1
,σ

2
,σ

3
∈

FSType and all formula distribution types µ
1
, µ

2
, µ

3
∈ FDType,

(1) If σ
3
= σ

1
⊓ σ

2
, then σ

3
⊑ σ

1
∧ σ

3
⊑ σ

2
(2) If µ

3
= µ

1
⊓ µ

2
, then µ

3
⊑ µ

1
∧ µ

3
⊑ µ

2

Armed with the de�nition of evidence and the meet operator, we can now state the following
invariant for distribution evidences that crisply captures when an evidence is well-de�ned with
respect to a judgment.

(wdB)
ε ∈ {Real,Bool, ?} ε ⊑ σ ε ⊑ δ

ε ⊢ σ ∼ δ
(wd→)

ε ⊢ σ ∼ δ ξ ⊢ µ ∼ ν

ε → ξ ⊢ σ → µ ∼ δ → ν

(wdξ )

∃ FV (Φ) ∪ FV (Φ
1
) ∪ FV (Φ

2
). Φ ∧ Φ

1
∧ Φ

2
∧ Φ

L
∧ Φ

R
∧ Φ∼

Φ
L
= ∀i ∈ I.

∑
k |ωk .l=i ωk = ϱi Φ

R
= ∀j ∈ J,

∑
k |ωk .r=j ωk = ϱj

Φ∼ = ∀k ∈ K.ωk > 0 ⇒ σ
k
⊢ σ

ωk .l
∼ σωk .r

Φ ▷ {{σ
ωk
k

| k ∈ K}} ⊢ Φ
1
▷ {{σ

ϱi
i | i ∈ I}} ∼ Φ

2
▷ {{σ

ϱj
j | j ∈ J}}

The invariant for distribution evidences ensures that (1) the sum of all the weights connected to a
simple type must be equal to the probability of that type, and (2) each evidence in the distribution
evidence of weight larger than zero must be well-de�ned (and thus more precise than both types
involved in the consistency judgment). Finally, we use this invariant, to validate that the consistent
transitivity operator preserves the invariant.

Lemma 5.5 (Invariant preservation). For all formula simple types ε
1
, ε

2
,σ

1
,σ

2
, δ ∈ FSType and

all formula distribution types ξ
1
, ξ

2
, µ

1
, µ

2
,ν ∈ FDType,

(1) Let ε
1
⊢ σ

1
∼ δ and ε

2
⊢ δ ∼ σ

2
. If ε

1
◦ ε

2
is de�ned, then ε

1
◦ ε

2
⊢ σ

1
∼ σ

2

(2) Let ξ
1
⊢ µ

1
∼ ν and ξ

2
⊢ ν ∼ µ

2
. If ξ

1
◦ ξ

2
is de�ned, then ξ

1
◦ ξ

2
⊢ µ

1
∼ µ

2
.

5.3 Dynamic Semantics

We now present the dynamic semantics for TPLC, which relates programs to probability distri-
butions over �nal values, through a big-step reduction relation (like in SPLC). The adoption of a
distribution semantics is key to establish the dynamic gradual guarantee (DGG), which requires
that reduction be monotone with respect to imprecision. To see this, assume that we adopt a (e.g.
sampling) semantics that relates programs to individual �nal values. Under this semantics, program
(λx : Bool.(x :: ? + 1) ⊕ 1

2

true) false reduces to true (with probability 1

2
), while the less precise

program (λx : ? .(x :: ? + 1) ⊕ 1

2

true) false reduces to an error (also with probability 1

2
), which

contradicts the DGG. Nevertheless, we can recover the DGG by considering all possible program
outcomes at the same time, via a distribution semantics.
The distribution semantics is presented in Figure 12. Reduction judgmentm ⇓

k
Φ ▷ V denotes

that term m reduces to distribution con�guration Φ ▷ V in k steps. The number of steps of
reduction judgments are only required to establish the metatheory, and can be removed in a real
implementation. Several rules are de�ned similarly to SPLC, but accounting for the fact that values
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m ⇓
k
Φ ▷ V V ::= {{v

ϱi
i | i ∈ I}} (distribution values)

(Dapp)

d̃om(ε )v :: δ ⇓
1
· ▷ {{w1}}

sub((c̃od(ε )m :: µ ),w, x ) ⇓
k
Φ ▷ V

(ε (λx : δ .m) :: σ → µ ) v ⇓
k+1

Φ ▷ V
(D⊕)

m ⇓
k1

Φ
1
▷ V1 n ⇓

k2
Φ
2
▷ V2

Φ
′
= Φ

1
∧ Φ

2
∧ Φ

m ⊕
Φ

ϱ1 ϱ2n ⇓
k1+k2+1

Φ
′
▷ ϱ1 · V1 + ϱ2 · V2

(Dlet)

m ⇓
k1

{{v
ϱi
i | i ∈ I}} ∀i ∈ I. sub(n,vi , x ) ⇓k2

Φi ▷ Vi

let x =m in n ⇓
k1+k2+1

(
∧
i ∈I Φi ) ▷

∑
i ∈I

ϱi · Vi
(Dv)

v ⇓
1
· ▷ {{v 1}}

(Derr)
µ = Φ ▷ {{σ

ϱi
i | i ∈ I}}

errorµ ⇓
1
Φ ▷ {{error

ϱi
σi

| i ∈ I}}
(Dmon)

m ⇓
k

V

m ⇓
k+1

V

(D::σ )

ε
2
(ε
1
u :: σ ) :: δ ⇓

1
· ▷

{
{{(ε

3
u :: δ )1}} If ε

1
◦ ε

2
= ε

3

{{error1σ }} otherwise

(D::µ )

m ⇓
k ′

Φ
1
▷ {{v

ϱi
i | i ∈ I}} ⊢ Φ

1
▷ {{v

ϱi
i | i ∈ I}} : µ ′ ξ ⊢ µ ∼ ν ν = Φ3 ▷ {{δ

ϱj
j | j ∈ J}}

(ξm :: ν ) ⇓
k ′+1




Φ
2
▷

∑
k ∈K

ωk · Vk If (µ ′ = µ ) ◦ ξ = Φ2 ▷ {{ε
ωk
k

| k ∈ K}}, where ∀k ∈ K,

i = ωk .l ∧ j = ωk .r =⇒ (ε
k
vi :: δj ) ⇓1 · ▷ Vk

{{error1ν }} otherwise

m[v/x ] : Term × Value × Var⇀ Term

sub(m, εu :: σ , x ) = m[εu :: σ /x ] sub(m, errorσ , x ) = errorµ where x : σ ⊢m : µ

Fig. 12. Distribution semantics of TPLC (excerpt).

are always ascribed. Rule (Dapp) �rst ascribes argument v to δ , appealing to transitivity with
the domain of ε as evidence. After its reduction, the obtained value w is substituted for x in the
body of the function using the auxiliary function sub. If during v reduction transitivity does not
hold (andw is thus errorδ ), sub yields term errorµ , µ being the expected distribution type of the
application. Rule (Dlet) reduces subterm n by substituting x by all the possible outcomes ofm ,
using also function sub to properly handle the case where one such outcome is an error. The so
obtained distribution con�gurations are combined (distribution values via their weighted sum and
formulas via their conjunction) to form the �nal outcome of the let–expression. Rule (D⊕) reduces
the pair of branches and combines their results like the (Dlet) rule, the major di�erence being
that formula Φ is also included in the resulting distribution con�guration. Rule (Dv) lifts values to
(Dirac) distribution values. Rule (Derr) reduces an error over distribution type µ to a distribution of
errors over simple types σi . Rule (Dmon) establishes the monotonicity of the reduction relation with
respect to the step index. Rule (D::σ ) analyzes whether type of u is consistent with δ , combining
the respective evidences through the consistent transitivity operator. The rule yields either a Dirac
distribution of a newly ascribed value (if consistent transitivity succeeds), or (else) an error.

Rule (D::µ ) is the most challenging. Intuitively, it “pushes” simple evidences within ξ into the out-
comes ofm . However, note that pushing every simple evidence within ξ into every possible outcome

ofm is not what we want. For instance, given the (informal) program {{Real
1

2 ,Bool
1

2 }}(1 ⊕
1

2

1

2

true)::

{{Real
1

2 ,Bool
1

2 }}, it would be futile to push evidence Real into true, or Bool into 1. Here, we have two
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problems to address. First, to determine what evidences must be pushed into what values. Second,
to determine the probability of each such combination. We address both problems simultaneously,
taking advantage of the consistent transitivity operator, and a subsidiary relation over formula
types we introduce next.

Observe that rule (D::µ ) proceeds by �rst reducingm to a value distribution of type µ ′ . However,
this µ ′ can be (syntactically) di�erent from µ , the actual type ofm . What we require here is that µ ′

be a reordering of µ . We thus introduce the reordering relation
r
= over formula types, which (for

distribution types) is nothing more than the coupling lifting of the syntactic equality.

De�nition 5.6 (Reordering). The reordering relation
r
= over formula simple and distribution types

is de�ned by the following clauses:

Real
r
= Real Bool

r
= Bool ?

r
= ?

σ
2

r
= σ

1
µ
1

r
= µ

2

σ
1
→ µ

1

r
= σ

2
→ µ

2

L r
=

(
µ ,ν

)

µ
r
= ν

We can construct an initial evidence for reordering judgments similarly to the meet operator:

De�nition 5.7 (Reordering initial evidence). The partial operator = over formula simple and
distribution types is de�ned as follows:

Real = Real = Real Bool = Bool = Bool ? = ? = ?

(σ
1
→ µ

1 =

σ
2
→ µ

2
) = (σ

1 =

σ
2
) → (µ

1 =

µ
2
) µ

1 =

µ
2
= W

=

(µ
1
, µ

2
)

Lemma 5.8. For all formula simple types σ
1
,σ

2
∈ FSType and all formula distribution types µ

1
, µ

2
∈

FDType,

(1) If σ
1

r
= σ

2
, then σ

1 =

σ
2
is de�ned, and σ

1 =

σ
2
⊢ σ

1

r
= σ

2
.

(2) If µ
1

r
= µ

2
, then µ

1 =

µ
2
is de�ned, and µ

1 =

µ
2
⊢ µ

1

r
= µ

2
.

Here, ε ⊢ σ
1

r
= σ

2
means that evidence ε justi�es reordering σ

1

r
= σ

2
and holds if ε ⊑ σ

1 =

σ
2
. The

notion of evidence for the reordering between distribution types is de�ned analogously.
Reordering and consistency interact nicely, in that their evidences can be soundly combined:

Lemma 5.9. For all formula simple types ε , ε ′,σ ,σ ′
, δ ∈ FSType and all formula distribution types

ξ , ξ ′, µ , µ ′,ν ∈ FDType,

(1) If ε ⊢ σ
r
= σ ′
, ε ′ ⊢ σ ′ ∼ δ and ε ◦ ε ′ is de�ned, then ε ◦ ε ′ ⊢ σ ∼ δ .

(2) If ξ ⊢ µ
r
= µ ′, ξ ′ ⊢ µ ′ ∼ ν and ξ ◦ ξ ′ is de�ned, then ε ◦ ε ′ ⊢ µ ∼ ν .

Returning to rule (D::µ ), observe that evidence (µ ′ = µ ) ◦ ξ addresses both of the mentioned
problems: every simple evidence ε

k
in (µ ′ = µ ) ◦ ξ connects a simple type from µ ′ with a simple

type from ν , via its corresponding weight ωk . To form the �nal distribution value, evidence ε
k
is

pushed to the ascription of value v
ωk .l

with type δωk .r . After reducing these terms, the obtained
distribution values are combined (through a weighted sume) to yield the �nal distribution value.

To illustrate this process, consider expression ξm ::{{?
2

3 ,Real
1

3 }}, where ξ = (ω1(1, 1) =
1

6
∧

ω2(1, 2) =
1

3
∧ ω3(2, 1) =

1

2
) ▷ {{Realω1,Realω2,Boolω3 }} and ξ ⊢ {{Real

1

2 ,Bool
1

2 }} ∼ {{?
2

3 ,Real
1

3 }}.7

If m ⇓
1
{{((Bool)true :: Bool)

1

2 , ((Real)1 :: Real)
1

2 }}, then the ξ ′ = (ω ′
1
(1, 2) = 1

2
∧ ω ′

2
(2, 1) =

1

2
) ▷ {{Realω

′
1,Boolω

′
2 }}. Notice that ξ ′ ◦ ξ = (ω ′′

1
(1, 1) = 1

2
∧ ω ′′

2
(2, 1) = 1

6
∧ ω ′′

3
(2, 2) = 1

3
) ▷

7We have simpli�ed the notation by using real numbers instead of variables (thus omitting formulas), and omitting some
trivial ascriptions.
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Γ ⊢ v : σ { v

Γ ⊢ m : µ { m

(Eapp)

Γ ⊢ v : σ { v Γ ⊢ w : δ { w δ ∼ d̃om(σ )

ε
1
= ⌈δ ⌉ ⊓ ⌈d̃om(σ )⌉ ε

2
= ⌈σ ⌉ ⊓ ⌈d̃om(σ ) → c̃od(σ )⌉

Γ ⊢ v w : c̃od(σ ) { let x = ε
1
w :: ⌈d̃om(σ )⌉ in let y = ε

2
v :: ⌈d̃om(σ ) → cod(σ )⌉ in y x

(E⊕)

Γ ⊢ m : µ { m Γ ⊢ n : ν { n ξ
1
= ⌈µ ⌉

ξ
2
= ⌈ν ⌉ ω1,ω2 fresh ⌈ρ⌉ω1

= Φ
1

⌈(1 − ρ )⌉ω2
= Φ

2

Φ = Φ
1
∧ Φ

2
∧ (ω1 + ω2 = 1) ξ = Φ ⊢ (ω1 · ξ1 + ω2 · ξ2) ⊓ ⌈ρ · µ + (1 − ρ ) · ν ⌉

Γ ⊢ m⊕ρn : ρ · µ + (1 − ρ ) · ν { ξm ⊕
Φ

ω1 ω2
n :: ⌈ρ · µ + (1 − ρ ) · ν ⌉

(Eλ)
Γ, x : σ ⊢ m : µ { m ε = ⌈σ → µ ⌉ ⊢ σ

Γ ⊢ λx : σ .m : σ → µ { ελx : ⌈σ ⌉ .m :: ⌈σ → µ ⌉
(E::µ )

Γ ⊢ m : µ { m µ ∼ ν
ξ = ⌈µ ⌉ ⊓ ⌈ν ⌉ ⊢ ν

Γ ⊢ m :: ν : ν { ξm :: ⌈ν ⌉

Fig. 13. Elaboration from GPLC to TPLC (excerpt).

{{Boolω
′′
1 ,Realω

′′
2 ,Realω

′′
3 }}. Finally, the whole expression reduces to {{((Bool)true :: ?)

1

2 , ((Real)1 ::

Real)
1

6 , ((Real)1 :: Real)
1

3 }}.

5.4 Elaboration

As previously mentioned, the runtime semantics of GPLC is given via translation to the TPLC
target language. Figure 13 presents the type-driven elaboration rules from GPLC to TPLC. Judgment
Γ ⊢ v : σ { v (resp. Γ ⊢ m : µ { m), denotes the elaboration of value v (resp. termm) from value
v (resp. tern m), where v (resp. m) is typed σ (resp. µ ) under environment Γ. For simplicity, we
write v : σ { v (resp. m : µ { m) as a shorthand for · ⊢ v : σ { v (resp. · ⊢ m : µ { m). Rule
(Eλ) and the ones for elaborating other values, elaborate by inserting ascriptions to their types.
The initial evidence between two gradual types is computed using the meet of the lifted types. Rule
(Eapp) insert ascriptions in both the function and argument to make top-level constructor match
using A-normal form. Rule (E::µ ) produces initial evidence to justify the consistency judgment
between µ and ν . Rule (E⊕) is designed to carefully deal with the probability annotations. First, it
generates two fresh variables: ω1 for annotation ρ , and ω2 for the complement 1− ρ .8 Second, these
two fresh variables are used to generate two formulas Φ

1
and Φ

2
by lifting ρ and 1 − ρ . Third, the

annotation formula Φ is computed by combining Φ
1
and Φ

2
, with the extra requirement that the

sum of the probability variables must be one (in case ρ = ?). Finally, we insert an extra ascription to
relate variables ω1 and ω2 with the fresh variables obtained from lifting the type of the expression
(as they will be di�erent).

To conclude, we establish that the elaboration rules preserve typing:

Theorem 5.10 (Elaboration Preserve Types). For every value v, term m, simple type σ and

distribution type µ from GPLC ,

(1) If Γ ⊢ v : σ , then there exists value v in TPLC such that Γ ⊢ v : σ { v and ⌈Γ⌉ ⊢ v : ⌈σ ⌉.

(2) If Γ ⊢ m : µ , then there exists termm in TPLC such that Γ ⊢ v : µ { m and ⌈Γ⌉ ⊢m : ⌈µ ⌉.

Here, ⌈Γ⌉ is the pointwise lifting of Γ.

8For ω1 and ω2 we do not care about the indexes because they do not �ow into evidences. For this reason we can arbitrary
choose 0 and 0 as default values.
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(⊑V)

∀ FV (Φ
1
). Φ

1
=⇒ ∃ FV (Φ

2
) ∪ {ωi j | i ∈ I ∧ j ∈ J}.

{{ωi j | i ∈ I ∧ j ∈ J}} ⊢ {{v
ϱi
i | i ∈ I}}

Φ
1 ⊑ {{v

ϱj
j | j ∈ J}}

Φ
2

Φ
1
▷ {{v

ϱi
i | i ∈ I}} ⊑ Φ

2
▷ {{v

ϱj
j | j ∈ J}}

⊢m : δ σ ⊑ δ

errorσ ⊑m
(⊑⊕)

m ⊑m′ n ⊑ n′ ∀FV (Φ
1
).Φ

1
⇒ Φ

2

m ⊕
Φ
1

ϱ1 ϱ2 n ⊑m′ ⊕
Φ
2

ϱ1 ϱ2 n
′

Fig. 14. Term precision of TPLC (excerpt).

5.5 Type Safety and Gradual Guarantee

We can now establish several properties about GPLC, based on the elaboration to TPLC. To this
end, we start highlighting that even though our static language (SPLC) is terminating, when
introducing unknown types, one can encode statically well-typed programs that diverge, rendering
our gradual languages (GPLC and TPLC) non-terminating. The emblematic program illustrating
this phenomenon is the omega term Ω = (λx :?.x x)(λx :?.x x).
In the remaining of this section, for simplicity, given m we write m ⇓ Φ ▷V if ⊢ m : µ { m

(for some µ and m) and there exists k such that m ⇓
k
Φ ▷ V (for some Φ and V ), and m ⇑ if

⊢ m : µ { m (for some µ andm) and there exists no such k . In the former case we say that m
(similarly,m) terminates, reducing to a distribution value, while in the latter case we say that m
(similarly,m) diverges (also denoted bym ⇑). Formally, this terminology corresponds to the notion
of certain termination, where, intuitively, a program is considered terminating if there is a bound
on the length of all its executions.
We note that probabilistic programs aslo support more general notions of termination, such as

almost-sure termination, which intuitively allows diverging executions, but requires them to have
an overall null probability. Support for reasoning about this class of programs is left as future work.

Type Safety. Following [Lennon-Bertrand et al. 2022], we model errors (errorσ and errorµ ) as
expressions, simplifying this way the statement of type safety, as we do not need to reason about
error separately. Type safety for GPLC then states that if a term m is well-typed, then it either
reduces to a distribution value of an equivalent type, or diverges:

Theorem 5.11 (Type safety for GPLC). For every term m and gradual distribution type µ from

GPLC, if ⊢ m : µ then either

(1) m ⇓ Φ ▷ V, ⊢ Φ ▷ V : µ and µ
r
= ⌈µ ⌉ for some Φ, V and µ , or (2) m ⇑ .

Dynamic Gradual Guarantee. To establish the dynamic gradual guarantee (DGG) for GPLC, we start
by establishing the DGG for TPLC. This requires de�ning the notion of type and term precision for
TPLC. Type precision is de�ned in the same was as for GPLC (see Figure. 8). Term precision is the
natural lifting of type precision to terms, and is de�ned in Figure. 14. Rule (⊑V) relates two value
distribution by lifting the precision relation on values to distributions via couplings, similarly to
type precision. Like in [Lennon-Bertrand et al. 2022; New et al. 2019], an errorσ is more precise
than any term provided σ is more precise than the term type. Rule (⊑⊕) relates two probabilistic
choices if the corresponding subterms are in precision relation, and most importantly, the formula
in the more precise probabilistic choice entails the formula in the less precise precise probabilistic
choice. The notion of entailment over Formula is rather standard, and thus omitted. Finally, note
that the pair of probabilistic choices share the same variable names after alpha renaming. To
illustrate this rule, assume that we want to show that a probabilsitic choice with a static probability
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VJRealK = {(r , εr :: Real) ∈ Atom[Real] | r = r }

VJτ → T K = {(v1,v2) ∈ Atom[τ → T ] | ∀(v ′
1
,v ′

2
) ∈ VJτ K. (v1 v

′
1
,v2 v

′
2
) ∈ TJT K}

VJT K = {(V,V) | V = {{v
pi
i | i ∈ I}} ∧ V = {{v

pj
j | j ∈ J}} ∧ ∃ξ = {{τ

ωk
k

| k ∈ K}}.

(ξ ,V,V) ∈ Atom[T ] ∧ ∀ωk > 0, i = ωk .l, j = ωk .r. (vi ,vj ) ∈ VJτ
k
K})

TJT K = {(m1,m2) |m1 ⇓∗s V1 ∧m2 ⇓∗ V2 ∧ (V1,V2) ∈ VJT K}

GJΓ, x : τ K = {γ [(v,v ′)/x] | γ ∈ GJΓK ∧ (v,v ′) ∈ VJτ K} GJ·K = {∅}

Atom[τ ] = {(v,v ′) | ⊢s v : τ ∧ ⊢ v ′ : τ }

Atom[T ] = {(ξ ,V,V) | ⊢s V : T
1
∧ ⊢ V : T

2
∧ ξ ⊢ T

1

r
= T

2
∧T

r
= T

1
∧T

r
= T

2
}

Γ ⊢m1 ≈m2 : T ⇐⇒ ∀(γ1,γ2) ∈ GJΓK. (γ1(m1),γ2(m2)) ∈ TJT K

Fig. 15. Logical relation between SPLC and TPLC (excerpt).

1

2
is more precise than the one that we obtain replacing the static probability with ?. The rule

application would then generate, as premise, the entailment (ω1 =
1

2
∧ ω2 =

1

2
∧ ω1 + ω2 = 1) ⇒

(ω1 ∈ [0, 1] ∧ ω2 ∈ [0, 1] ∧ ω1 + ω2 = 1), with ω1,ω1 universally quanti�ed. The remaining rules
are standard.

Having de�ned the notion of precision, the major pending challenge to establish the DGG is to
prove that evidence combination is monotone with respect to imprecision:

Lemma 5.12 (Monotonicity of evidence combination). For all formula simple types ε
1
, ε

2
, ε

3
, ε

4
∈

FSType and all formula distribution types ξ
1
, ξ

2
, ξ

3
, ξ

4
∈ FDType,

(1) If ε
1
⊑ ε

2
, ε

3
⊑ ε

4
and ε

1
◦ ε

3
is de�ned then ε

1
◦ ε

3
⊑ ε

2
◦ ε

4

(2) If ξ
1
⊑ ξ

2
, ξ

3
⊑ ξ

4
and ξ

1
◦ ξ

3
is de�ned then ξ

1
◦ ξ

3
⊑ ξ

2
◦ ξ

4

Proof sketch. For simple evidences, the proof proceeds by routine induction. For distribution
evidences, the proof requires some coupling combinations. Assume C

⊑
12

⊢ ξ
1
⊑ ξ

2
, C ⊑

34
⊢ ξ

3
⊑ ξ

4
,

C ◦
13

⊢ ξ
1
◦ ξ

3
. To prove that ξ

2
◦ ξ

4
is de�ned, from C

⊑
12

we build a coupling C
⊒
21

⊢ ξ
2
⊒ ξ

1
and then

use C
⊒
21

⊙ C ◦
13
⊙ C

⊑
34

as witness coupling, where the coupling composition operator ⊙ is de�ned as:

C1 ⊙ C2 = {{ωk1k2 (i, j) | ωk1k2 (i, j) =
ωk1 (i,h)ωk2 (h, j)∑

i ,k1 | ωk1 (i ,h)

ωk1 (i,h)
,ωk1 (i,h) ∈ C1,ωk2 (h, j) ∈ C2}}

To justify that ξ
1
◦ ξ

3
⊑ ξ

2
◦ ξ

4
, we start from coupling C ◦

13
and transform its �rst dimension (the

one typically iterated by index I) following the associations stated by coupling C
⊑
12

and its second
dimension (typically iterated by index J) following the associations stated by coupling C

⊑
34
.

Now we can establish the DGG for TPLC: reduction is monotone with respect to imprecision.

Theorem 5.13 (Dynamic gradual guarantee for TPLC). Supposem ⊑ n , ⊢m : µ and ⊢ n : ν .

(1) If m ⇓
k1
Φ
1
▷ V

1
, then n ⇓

k2
Φ
2
▷ V

2
, and Φ

1
▷V

1
⊑ Φ

2
▷V

2
. (2) If m ⇑, then n ⇑.

The DGG for GPLC is given by �rst elaborating the source terms to TPLC and then reducing the
TPLC terms.

Theorem 5.14 (Dynamic gradual guarantee for GPLC). Supposem ⊑ n, ⊢m : µ and ⊢ n : ν .

(1) If m ⇓ Φ1 ▷V1
, then n ⇓ Φ2 ▷V2

and Φ1 ▷V1
⊑ Φ2 ▷V2

. (2) If m ⇑ , then n ⇑ .
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Conservative extension of the dynamic semantics. In Section 4, we establish the equivalence between
the static semantics of SPLC and GPLC for fully-statically-annotated terms. Here —due to the
syntactic di�erences between both languages— to establish the equivalence between the dynamic
semantics, we use logical relations. The logical relation between SPLC and TPLC is presented in
Figure 15, and states that two related terms reduce to related distributions. Formally, it is de�ned
using three mutually-de�ned interpretations: one for values (VJτ K), one for distribution values
(VJT K), and another one for terms or computations (TJT K).

We write (v1,v2) ∈ VJτ K to denote that valuesv1 andv2 are related at simple type τ . Two values
are related at type τ if, �rst, they type check to τ , written (v,v ) ∈ Atom[τ ]. Two booleans (resp.
real numbers) are related when the underlying values are the same. Two functions are related if
their application to related argument yields related computations.

Two distribution values V,V are related at a distribution typeT if, �rst, there exists a distribution
evidence (of fully-static types) ξ that justi�es that their types9 are equivalent to (i.e. a reorder of)T ,
written (ξ ,V,V) ∈ Atom[T ].10 Second, for all positive probabilities in the evidence (the coupling),
the corresponding values must be related at the corresponding type.

Two computations are related if both reduce to related distribution values. Two value substitutions
are related at some type environment, if every variable in the domain of the environments is bound
to related values. Finally, two open terms are related if the substitution to any two related value
environment yield related computations.

We can now establish the conservative extension of the dynamic semantics of TPLC with respect
to SPLC for fully-annotated terms.

Theorem 5.15 (Dynamic conservative extension of TPLC w.r.t. SPLC).

(1) ⊢s m : τ ,m { m′
: τ , then ⊢m ≈m′

: τ (2) ⊢s m : τ ,m { m′
: T , then ⊢m ≈m′

: T

The proof of Theorem 5.15 relies on the fact that the composition of static evidences is always
de�ned:

Lemma 5.16.

(1) If ε
1
⊢ τ

1
∼ τ

2
and ε

2
⊢ τ

2
∼ τ

3
, then ε

1
◦ ε

2
is de�ned, and ε

1
◦ ε

2
⊢ τ

1
∼ τ

3
.

(2) If ξ
1
⊢ T

1
∼ T

2
and ξ

2
⊢ T

2
∼ T

3
, then ξ

1
◦ ξ

2
is de�ned, and ξ

1
◦ ξ

2
⊢ T

1
∼ T

3
.

6 RELATED WORK

Gradual typing. As previouslymentioned, gradual typing has been applied tomany type discipline
and language constructs. To the best of our knowledge, gradual typing has not been applied to
probabilistic languages, neither to non-deterministic languages.
Lehmann and Tanter [2017] presented gradual re�nement types, which allow the smoothly

transition –and interoperability– between simple types and logically-re�ned types. In this work, we
use statically-typed re�nement types to implement cast/evidence, but do not support for gradual
re�nement types at the source level. Phipps-Costin et al. [2021] present TypeWhich, an approach
for automatic type migration, which tries to infer additional or improved type annotations in
gradually typed languages. Similarly to this work, TypeWhich also generates constrains (formulas)
during type checking, and relies in an SMT solver to �nd solutions to their objectives.
There exist many �avors to de�ne the runtime semantics of gradual languages. The classical

approach is via a translation to a cast calculus [Garcia 2013; Herman et al. 2007, 2010; Siek et al.

9The type rule for V is de�ned analogously to V, and can be found in the supplementary material.
10In TPLC, as the lifting of static types T always yields distribution types with one-to-one equality formulas, e.g.

{{Real
1
2 , Bool

1
2 }} is lifted as (ω1 =

1

2
∧ ω2 =

1

2
) ⊢ {{Realω1 , Boolω2 }}, for simplicity, to avoid writing variables, in

the rule de�nition we annotate probabilities as numbers instead (i.e. v
pi
i and v

pj
j ).
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2015a; Siek and Wadler 2010; Siek et al. 2009; Wadler and Findler 2009]; Garcia et al. [2016] de�ned
the runtime semantics directly in the source language, by mimicking the proof normalization steps
done in type safety; and recently, Ye et al. [2021] also presented direct dynamic semantics by using
type-directed operational semantics (TDOS) [Huang and Oliveira 2020]. In this work, we follow
the classical approach –de�ning a source and target language (cast calculus)–, where casts are
implemented by using evidences from the AGT methodology.

There has been active work on designing gradual languages that allows the combination/collec-
tion of types. Castagna and Lanvin [2017]; Castagna et al. [2019] proposed a theory for gradual
set-theoretic types, supporting union, intersection and the unknown type. In parallel, Toro and
Tanter [2017] explored tagged and untagged union types, and Jafery and Dun�eld [2017] sums
types. Beside many fundamental di�erences, this work could be seen as a generalization of gradual
union types with gradual weights.

Probabilistic λ-calculus. We can trace the origin of probabilistic λ-calculus to the work of [Saheb-
Djahromi 1978], who present a typed, higher-order calculus. They develop a denotational semantics
based on Plotkin’s probabilistic powerdomain [Jones and Plotkin 1989] and an operational semantics
in terms of Markov chains. [Lago and Zorzi 2012b] surveys a variety of operational sematics for a
λ-calculus with a probabilistic choice operator including small/big-step, inductive/coinductive and
call-by-value/name variants. All fell under the category of distribution-based semantics, relating
programs to probability distribution of values. [Ramsey and Pfe�er 2002] develop a denotational
semantics for a stochastic λ-calculus exploiting the monadic structure of probability distributions.
More recently, [Danos and Ehrhard 2011] and [Ehrhard et al. 2017] study a denotational semantics
for higher-order programs in terms of coherence spaces.
Di�erent type systems have been developed for probabilistic λ-calculi, aimed at establishing

di�erent program invariants. [Lago and Grellois 2017] use sized types to reason about almost-sure
termination of higher-order programs. [Avanzini et al. 2021] develop a type system based on
re�nement types, to perform complexity analysis of higher-order functional programs. [Reed and
Pierce 2010] (and many subsequent extensions) present a type system for reasoning about program
sensitivity, used for established di�erential privacy properties of programs.

7 CONCLUSION

In this work, we provide a �rst step into the theoretical foundation of gradual probabilistic pro-
gramming. We develop GPLC, to the best of our knowledge, the �rst gradual probabilistic language.
The language enables an increased �exibility and expressivity, allowing some form of probabilistic
speci�cations and also of program re�nement via unknown probabilities in probabilistic choices.
The development of GPLC is justi�ed using the AGT methodology. The dynamic semantics of GPLC
is given via translation to an evidence-based calculus, called TPLC, which features a distribution-
based dynamic semantics. The development of GPLC and TPLC heavily relies in the notion of
probabilistic coupling, as required for de�ning several relations and functions, such as type consis-
tency, precision and consistent transitivity. As for the metatheory, GPLC satis�es type safety as
well as the re�ned criteria for gradual languages.

As future work, we plan to explore the addition of more features to the language, such as
subtyping and polymorphism. Introducing subtyping may bring several challenges, such as the use
of sub-distributions. Another possible line of future work are the practical aspects of the gradual
language, such as e�cient handling of evidences in runtime, and space-e�cient reduction rules.
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