
Elucidating Type Conversions in SQL Engines

Wenjia Ye1,2(B), Mat́ıas Toro3, Claudio Gutierrez3, Bruno C. d. S. Oliveira2,
and Éric Tanter3

1 National University of Singapore, Singapore, Singapore
yewenjia@connect.hku.hk

2 The University of Hong Kong, Hong Kong, China
bruno@cs.hku.hk

3 Computer Science Department, University of Chile and IMFD, Santiago, Chile
{mtoro,cgutierr,etanter}@dcc.uchile.cl

Abstract. Practical SQL engines differ in subtle ways in their handling
of typing constraints and implicit type casts. These issues, usually not
considered in formal accounts of SQL, directly affect the portability of
queries between engines. To understand this problem, we present a formal
typing semantics for SQL, named TRAF, that explicitly captures both
static and dynamic type behavior. The system TRAF is expressed in
terms of abstract operators that provide the necessary leeway to precisely
model different SQL engines (PostgreSQL, MS SQL Server, MySQL,
SQLite, and Oracle).
We show that this formalism provides formal guarantees regarding the
handling of types. We provide practical conditions on engines to prove
type safety and soundness of queries. In this regard, TRAF can serve
as precise documentation of typing in existing engines and potentially
guide their evolution, as well as provide a formal basis to study type-
aware query optimizations, and design provably-correct query transla-
tors. Additionally, we test the adequacy of the formalism, implementing
TRAF in Python for these five engines, and tested them with thousands
of randomly-generated queries.

Keywords: SQL, Typing Semantics, Databases

1 Introduction

Query translation between different SQL engines is a common practice aris-
ing in different scenarios, like database migration (to reduce costs, mainte-
nance, changes in software, etc.) [6, 20, 22] and prototyping (code in lightweight
databases like SQLlite and then port to a more robust database). Today there
are many tools addressing this task [1, 18].

Translation between SQL engines could bring many surprises. One that par-
ticularly captures attention is the semantic discrepancy between SQL engines
related to typing behavior, the problem we study in this paper. This problem

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-91118-7 16

© The Author(s) 2025
V. Vafeiadis (Ed.): ESOP 2025, LNCS 15694, pp. 408–435, 2025.
https://doi.org/10.1007/978-3-031-91118-7 16

https://doi.org/10.1007/978-3-031-91118-7_16
https://doi.org/10.1007/978-3-031-91118-7_16
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-91118-7_16&domain=pdf

Elucidating Type Conversions in SQL Engines 409

is mainly due to differences in datatypes, type checking, when to perform the
checks, and explicit and implicit type casts that may or may not be performed
by the engines. This poses substantial challenges for developers and database
administrators. Existing migration tools, whether paid or open source, often fall
short of addressing these differences, tending to prioritize syntax over behavioral
disparities.4

For illustration purposes, consider a table R. In the query SELECT 'a' + '2b'
FROM R, the engine PSQL reports a static error and Oracle a runtime error (in
both engines, addition is not defined for strings); MSSQL interprets the operation
as string concatenation, yielding 'a2b'; and MySQL and SQLite yield 2. On the
other hand, the query SELECT 1 FROM R WHERE '1' < 2 shows that MySQL and
SQLite do not always exhibit identical behavior: the first yields 1, while the other
an empty result. In Table 1 we present further (minimal) examples of this wide
difference in behavior, which are explained in detail in Section 2.

As these examples show, database engines have different treatment of types,
following different design models, like some being statically typed while others
embrace dynamic typing, and different approaches to overloading basic arith-
metic and comparison operations.

Understanding and addressing these anomalies is not a simple task. A first
issue is that SQL standards do not cover many issues related to typing or leave
the interpretation rather open.5 In addition, many of the design decisions of the
engines are hidden under optimization mechanisms that either are not public or
complex to find in the code. Furthermore, the problem has not been addressed
by the research literature. Although there is solid work on the formalization of
the semantics of SQL [19,31], they assume that all comparisons and operations
apply to the right types. Typing in SQL have been explored [3, 13, 24, 26, 32].
Nonetheless, the problem of type constraints and casts potentially raising errors
at runtime, which is addressed in this paper, has not been dealt with before.

In this paper we address the problem of discrepant type related behavior by
proposing a general formal framework, called TRAF, that models both common
behavior and the intricate behavioral discrepancies across SQL database engines.
TRAF was designed to explicitly capture the semantics of types, both static and
dynamic, of a core fragment of relational algebra. The selected minimal core (al-
ready presented in other works like [8,19,27]) is designed to include the minimal
features and operators that generate the indicated anomalies, as well as being
flexible enough to model different SQL engines. It comprises booleans, numbers,
selections, cross-products, nested queries within FROM clauses, and set operations.
We also add support for arithmetic operators and type casts. Although features

4 Some examples: https://en.wikibooks.org/wiki/Converting_MySQL_to_

PostgreSQL http://www.sqlines.com/online https://www.rebasedata.com/

convert-bmysql-bto-bpostgres-bonline
5 A good example is the following: To cast an exact number to an exact numeric type,
e.g. from a real to int, the specification says: ”If there is a representation of SV [source
value] in the data type TV [target value] that does not lose any leading significant
digits after rounding or truncating if necessary, then TV is that representation. The
choice of whether to round or truncate is implementation-defined.” ANSI SQL 1992,
Sec. 6.10, Case 3)a)i))

https://en.wikibooks.org/wiki/Converting_MySQL_to_PostgreSQL
https://en.wikibooks.org/wiki/Converting_MySQL_to_PostgreSQL
http://www.sqlines.com/online
https://www.rebasedata.com/convert-mysql-to-postgres-online
https://www.rebasedata.com/convert-mysql-to-postgres-online

410 W. Ye et al.

SELECT …
FROM …

π...(σ...(. . .)) πe::τ(σe′ ::τ′ (. . .))
SQL query TRAF query

TRAF query
with casts

static type error runtime type error

Translation Typechecking Cast Insertion Evaluation
Table

Fig. 1: Overview of TRAF. Some abstract operators in the typechecking, cast
insertion, and evaluation phases must be instantiated to implement a particular
engine. We provide sample instantiations for PSQL, MSSQL, Oracle, MySQL and
SQLite.

such as nulls, aggregation, or EXISTS, are not supported within this core, it serves
to illustrate the primary distinctions, leaving the extension to these additional
features as potential future work.

We study two kinds of different behavior among engines: (1) different re-
sults due to type conversions, and (2) different behavior related to type errors.
Regarding the latter, we identify two kinds of type errors: static errors, which
happen during compilation/before running the query; and runtime errors that
occur during the execution of the query. We say that two engines differ in be-
havior if, for a given query, the results are different (including different kinds of
errors).

TRAF involves four sequential phases as illustrated in Figure 1: translation,
typechecking, cast insertion, and evaluation. In the translation step (which is
standard and can be found in the extended version of the paper), an SQL query
is (1) analyzed to rule out syntactically invalid queries such as SELECT FROM FROM

and (2) transformed to a TRAF query, that is, essentially a typed relational alge-
bra query. Next, in the typechecking phase, a typechecker validates the query
before evaluation (Section 3.3).6 This typechecker is responsible for identifying
mismatches between types and the number of columns of subqueries in set oper-
ations, and to ensure proper access to column names in scope. More importantly,
it validates the appropriate usage of both implicit and explicit casts, rejecting
operations that may result in casts known to always fail during evaluation. If the
typechecker rejects the query, the process terminates and reports a static type
error to the user. However, if the query is deemed well-typed, it proceeds to the
third phase.

The cast insertion phase (Section 3.4) transforms a TRAF query by making
all implicit type casts explicit. The purpose of this phase is to circumvent the
complexities that would arise from handling implicit casts in the evaluation
phase, thereby simplifying the dynamic semantics of TRAF. The evaluation
phase (Section 3.5) interprets the transformed TRAF query. For this purpose,
we present a monadic evaluator expressed using denotational semantics, cleanly
encompassing the management of explicit type conversions and runtime errors.
Should a type error arise during evaluation, the evaluation process is halted,
and a runtime type error is reported. In the absence of runtime type errors, the
outcome of evaluating a query is a table.

6 TRAF does not assume the absence of type mismatches; users can write queries such
as SELECT R.A from R WHERE 'Bob' = 1.

Elucidating Type Conversions in SQL Engines 411

TRAF is designed to be flexible enough to model different real-world engines
(PSQL, MSSQL, Oracle, MySQL and SQLite) in order to facilitate understand-
ing of different behaviors and thus enable informed decisions when translating
queries. Specifically, typechecking, cast insertion, and evaluation are parameter-
ized in terms of abstract operators that need to be instantiated (Section 4).

The formal model is coherent and comprehensive, making it possible to pre-
cisely formulate and prove properties satisfied by all or some engines (Section 5).
First, we prove a type safety result that ensures that well typed queries either
reduce to a table or raise a (controlled) type error. In other words, evaluation
of well-typed queries does not get stuck. Second, we enhance this result prov-
ing that the resulting table can be typed to the same type of the query. Third,
the instantiation of the model to PSQL, MySQL and SQLite satisfies a theorem
stating that if the programmer does not use explicit casts in well-typed queries,
then the queries will evaluate without errors. Fourth, regarding cast insertion,
independently of the engine (the proofs are parameterized by light constraints
on abstract operators), translated queries preserve types, and the translation is
unique.

Finally, to validate the adequacy of our formal framework, and following
other approaches that also validate semantics by testing them against real-world
implementations [19, 29, 30], we developed multiple database interpreters, and
tested them with thousands of randomly-generated queries, comparing their re-
sults with those obtained from actual database engines. Additionally, we shed
light on the impact and challenges of query optimizations on the evaluation
process.

In summary, our contributions includes the identificacion of practical seman-
tic discrepancies due to typing between SQL engines; the description of TRAF, a
formal framework to reason about types both statically and dynamically, which
can model different SQL engines; the metatheory of TRAF, indicating precise
constraints on abstract operators required for properties to hold; and an empiri-
cal validation of our formal model, by building several interpreters tested against
real engines. Additional material, including proofs and full definitions, can be
found in the extended version. Also, we made available a prototype implemen-
tation as supplementary material.

The rest of the paper is organized as follows. Section 2 explains the discrep-
ancies illustrated in Table 1. Section 3 presents the TRAF formal framework.
Section 4 describes the instantiation of TRAF to practical SQL engines. Sec-
tion 5 presents and proves formal properties of the model and its instantiations.
Section 6 summarizes the experimental validation. In Section 7 we discuss related
work, and Section 8 presents brief conclusions.

2 Typing semantic discrepancies

In this section we explain the source of discrepancies of Table 1, which we use
as a starting point and develop (and justify) TRAF. For clarity, we categorize

412 W. Ye et al.

Query PSQL MSSQL Oracle MySQL SQLite

E1 SELECT 1.1 + 1 FROM R 2.1 2.1 2.1 2.1 2.1

E2 SELECT '1' + 1 FROM R 2 2 2 2 2

E3 SELECT '1.1' + 1 FROM R ✗ ↛ 2.1 2.1 2.1

E4 SELECT '1.1' + 1.1 FROM R 2.2 2.2 2.2 2.2 2.2

E5 SELECT '1' + '1' FROM R ✗ '11' 2 2 2

E6 SELECT 'a' + '2b' FROM R ✗ 'a2b' ↛ 2 2

E7 SELECT 1+A FROM R WHERE B=20 ✗ 2 2 2 2

E8 SELECT 1+A FROM R WHERE B=10 ✗ ↛ ↛ 1 1

E9 SELECT 1 + A FROM (SELECT '2' AS A) B ✗ 3 3 3 3

E10 SELECT 1 FROM R WHERE '1' < 2 1 1 1 1 ∅
E11 SELECT 1 FROM R WHERE '1.1' < 2 ✗ ↛ 1 1 ∅
E12 SELECT '1.1' FROM R INTERSECT SELECT 1.1 FROM R 1.1 1.1 ✗ 1.1 ∅
E13 SELECT '1.1' FROM R INTERSECT SELECT 1 FROM R ✗ ↛ ✗ ∅ ∅
Table 1: Examples of discrepant behaviors of different database engines, con-
sidering the table R(A,B) = {('Bob', 10), ('1', 20), ('1.1', 30)}. The queries are
purposely chosen to exhibit minimal cases of typing issues. For simplicity we
show only one element of the result. We use ✗ to denote a static error (before
execution), and ↛ to denote a runtime error.

the examples of discrepancies into three groups: arithmetic, boolean, and set
operations.

2.1 Arithmetic operations

For the first set of examples we focus on the expression being selected rather
than the tables or the conditions.

E1 and E2. To begin, we present two examples that behave uniformly across
the engines. For simplicity, we say that the result is 2.1, to denote a bag of
uniform elements {2.1, 2.1, 2.1}.

E3. This is the first example that illustrates a difference in behavior. PSQL
and MSSQL throw a type error, whereas the other engines return 2.1. The reason
for the error is that in PSQL and MSSQL we can implicitly cast a string to an
integer if the string is an integer, but not if the string is a real number. To
fix this problem in PSQL, we must explicitly cast the string to a real number:
SELECT CAST('1.1' as FLOAT) + 1 FROM R.

E4. If we take example 3, and change 1 for a real number, such as 1.1, then
the result is now 2.2 for every engine. The difference with respect to the previous
example is that the plus operation is defined for both integers and real numbers,
and now '1.1' can be cast directly to a real number.

E5. PSQL reports an static error due to the lack of an addition operator
between two strings. MSSQL returns '11' as addition is overloaded for string.
The other engines return 2 as addition is only defined between numbers, thus
implicit casting '1' to 1.

E6. Both PSQL and Oracle report an error, MSSQL uses string concatenation
yielding 'a2b', and MySQL and SQLite yield 2. The reason for the latter is due

Elucidating Type Conversions in SQL Engines 413

Operation SQLite Other engines

0 < 1 1 t

'0' < 1 0 t

'1' < 0 0 f

'0'+0 < 1 1 t

'0' < CAST(1 AS INT) 1 t

'0' < 1 + 0 0 t

Table 2: Behavior of the comparison operator in SQLite

to the way these engines cast strings to numbers: they search for a number in
the prefix of the string (if nothing is found then 0 is returned).

E7. PSQL rejects this query as column A is of type String, and the addition
between numbers and strings is not defined. This behavior is more conservative
than E2, as now it cannot determine statically if the given string can be cast to
number or not. Other engines defer the check to runtime and return 2. To fix
this query in PSQL we can explicitly cast column A to integer: SELECT 1+CAST(A

as INT) FROM R WHERE B=20.
E8. PSQL (statically) rejects this query similarly to E7. MSSQL and Oracle

now fail dynamically as they cannot convert 'Bob' to a number. MySQL and
SQLite on the other hand do not fail and return 1 as 'Bob' is cast to 0. Casting A

to INT in PSQL would make the error dynamic, and a runtime type error would
be reported instead, similarly to MySQL and SQLite.

E9. Contrary to E2, PSQL raises a static error as the nested query hides the
actual String returned by the subquery. All other engines yield 3 as conversions
are optimistically performed at runtime. To fix this query in PSQL an explicit
cast must be inserted SELECT 1 + CAST(A AS INT) FROM (SELECT '2' AS A) B.

2.2 Boolean operations

The following examples illustrate difference in behavior related to comparison
operators on conditionals. Note that 1 and 0 are used to represent true and false
in SQLite and MySQL.

E10. Almost every engine is able to cast '1' to INT, returning 1. SQLite, on
the other hand, returns a empty result as the condition is false. This is because
SQLite does not perform implicit conversions at the boundaries of comparisons.
SQLite has a type hierarchy where every string is bigger than any number.

E11. Now, if the left operand is a string representing a real, then PSQL
and MSSQL return a type error. This is because the best type of the comparison
operator is the one that takes two integers as argument (because 2 is an integer).
As there is no direct implicit conversion between a string representing a real and
an integer the query is rejected. SQLite still returns an empty result, and MySQL
and Oracle return 1.

Comparison operator in SQLite. SQLite warrants special attention to illus-
trate unique cases related to the comparison operator, as exemplified in Table 2.

414 W. Ye et al.

Notably, operations '0' < 1 and '1' < 1 yields 0. This behavior is attributed to
the fact that strings are considered larger than integers, as previously explained.
However, when a cast is introduced the expressions now yields 1. For instance,
'0' < CAST(1 as INT) yields 1. Since when the type of one operand is explicitly
specified, an implicit conversion to that type is performed on the other operand.

2.3 Set operations

E12. PSQL, MSSQL and MySQL, yield 1.1. This is because, during intersection,
two conditions are checked: (1) the number of columns of both subqueries must
match, and (2) the types of the columns must also be consistent. To achieve the
second condition, an implicit conversion from string to real is inserted in the left
subquery (the other direction is forbidden). However, Oracle encounters a type
error since the column types do not match. On the other hand, SQLite returns
an empty result as 1.1 is not the same as '1.1'.

E13. Now as '1.1' cannot be implicitly cast to an integer (the column type
of the right subquery), this program is rejected by PSQL, MSSQL and Oracle.
Both MySQL and SQLite return an empty result.

Having illustrated the various discrepancies between SQL engines in handling
queries, it becomes evident that a more structured approach is necessary to fully
understand and model these differences. To achieve this, we now turn to the
formalism of TRAF.

3 The (TRAF) formal framework

In this section we present the syntax, type system, cast insertion, dynamic se-
mantics, and translation of a typed core fragment of relational algebra, support-
ing projections, selection, set operations, arithmetic and boolean operations, and
implicit and explicit casts. The formalism captures common behavior between
engines while providing leeway to model different concrete engines, and thus is
parametrized by abstract operators (detailed and instantiated in Section 3.2).

3.1 Syntax

The syntax of Typed Relational Algebra Framework (TRAF) is presented in Fig-
ure 2. The formalization is inspired by the work of Guagliardo and Libkin [19],
except that here we deal with typing instead of assuming a prior (unstudied)
typing phase. Types play a central role in this work, because as we illustrated,
typing discrepancies are a source of important behavioral differences between en-
gines. This section first presents types and schemas, then values and expressions,
and finally queries.

Types and Schemas. There are two categories of types, value types τ for
expressions (and values), and relation types T for queries and tables (relations).
For simplicity, we only consider reals R, integers Z, booleans B and strings String.
To avoid dealing with precision issues inherent in floating-point representations,

Elucidating Type Conversions in SQL Engines 415

Types and τ ::= R | Z | B | String | ? (value types)
Schemas T ::= N 7→ τ | T,N 7→ τ (relation types)

Γ ::= ∅ | Γ,R 7→ T (schema)

Values and OA ∈ {+} (arithmetic ops)
Expressions OC ∈ {<,=} (comparison ops)

OB ∈ {∧,∨} (boolean ops)
w ::= d | n | b | s (simple values)
v ::= w | w :: ? (values)
e ::= N | v | e OA e | e :: τ (general expressions)
θ ::= e OC e | θ OB θ | ¬θ (boolean expressions)
β ::= e asN | β, e asN (aliased expressions)

Queries OS ∈ {∪,∩,×,−} (set query ops)
Q ::= R | πβ(Q) | σθ(Q) | Q OS Q | ε(Q) (queries)

Rows and r ::= vi
Tables t ::= {{ri}}

Fig. 2: Syntax of TRAF. n, b, s denote respectively an integer number, a
boolean value and a string. N is a name. R a relation.

we use the abstract type R to represent decimal numbers. In addition, we use
the symbol ? for the unknown type, used by PSQL to type string literals [17],
and to model flexible typing in SQLite. A relation type T is an ordered list of
pairs of column names and their corresponding value type. A schema Γ is a list
of pairs of relation names and their relation type. We assume that both T and Γ
do not contain duplicated column names and relation names, respectively (and
thus behave as mappings). Intuitively, schemas represent types of databases.

Values and expressions. We represent tables as bags of rows, where each
row is a list of values. A simple value w, which represent atomic data (integers,
booleans, strings). Values v are either a simple value w, or a simple value cast
to the unknown type w :: ? (the latter is not used directly by programmers,
and it is used exclusively in engines such as SQLite). There are three kinds
of expressions: general, boolean and aliased. A general expression e, used in
projections and selections, is either a column name N (e.g. Name or Age), a
value v, an arithmetic operation (for simplicity we only use +), or an explicit
cast e :: τ. Boolean expressions θ as usual are comparison operations or logical
combinations of them.7 As a standard, an aliased expression is a slight extension
of the classical renaming, allowing binding of names to expressions, instead of
only to queries. For example, in SELECT A.C FROM (SELECT 1+1 AS C FROM R) A,
the expression 1+1 gets a name C that can be used in the outer query.

Queries. A query is either a relation R, a projection πβ(Q), a selection
σθ(Q), or a set operation, that is, cross product (Q × Q), intersection (Q ∩
Q), union (Q ∪Q), difference (Q −Q), and the removal of duplication (ε(Q)).

7 Note that we do not include boolean expressions as general expressions, because
some engines do not support selecting boolean values in queries (e.g. in MSSQL
and Oracle, SELECT 1 < 2 FROM R is a syntactically invalid query while it is valid in
PSQL, MySQL and SQLite).

416 W. Ye et al.

The only novelty is that a projection here is parametrized by a list of aliased
expressions, instead of a list of names. This allows to model SQL queries like
SELECT 1+1 AS C FROM R as π(1+1) as C(R).

Rows and Tables. A table t is a bag of rows {{ri}}, where a row r is an
ordered list of values vi.

3.2 Abstract operators

As mentioned in Section 1, certain key operators in TRAF are left abstract, as
they depend on the specific engine being used. We mark with (*) the partial
operators.

Bidirectional Implicit Cast(*). Operator biconv(e1, τ1, e2, τ2) = τ3 deter-
mines the optimal implicit type cast for a set operator applied to two columns
of (possibly) different types. The biconv operator takes as argument two expres-
sions (e1, e2) and their corresponding types (τ1, τ2), returning a type. It either
returns τ2 or τ1 by testing if e1 can be implicitly cast to τ2, or if e2 can be
implicitly cast to τ1 respectively.

Explicit Cast(*). Operator cast(v, τ) = v′ attempts to cast value v to a
value v′ of type τ. This function is primarily used to evaluate casts at runtime.

Overloading Resolution(*). Operator resolve(e1, τ1, e2, τ2, O) = τ3 deter-
mines which specific operation among a set of overloaded ones should be called
based on the provided arguments during invocation. More specifically, given an
operator it tries to find the best candidate type for expressions e1 and e2, typed
as τ1 and τ2 respectively.

Explicit Cast Feasibility. This operator takes one expression and two
types, and returns a boolean. For simplicity, it is presented as a relation e : τ ′ ⇝⇝
τ, and rules out explicit casts that are known to fail at runtime. It tests if it is
possible to explicitly cast expression e of type τ ′, to an expression of type τ.

Type of Values. Operator ty (v) = τ computes the type of values (con-
stants).

Type Cleaning. The operator clean(T) = T ′ performs post-processing on
the relation type T, returning a new relation type T ′. This is primarly used in
PSQL, where literal strings are initially typed as ?, a type that is later converted
to String when determining the type of a subquery.

Annotation Insertion. The operator insert(e, τ, O) = e′ returns either an
explicitly cast expression e to type τ or simply e, depending on the operation
O. For instance, in SQLite, comparison operations do not implicitly cast their
operands, whereas addition operations do perform such casts.

Value Operation Application. Operator apply(O, v1, v2) = v3 performs
arithmetic or comparison operation O to values v1 and v2, yielding value v3.

In the next subsections, we use these operators to define the dynamic seman-
tics, the type system and the cast insertion procedure. Examples of instantiation
of these abstract operators can be found in Section 4.

Elucidating Type Conversions in SQL Engines 417

T ⊢ e : τ
(Tv)

T ⊢ v : ty (v)
(TOB)

T ⊢ θ1 : B T ⊢ θ2 : B
T ⊢ θ1 OB θ2 : B

(TN)
(N 7→ τ) ∈ T

T ⊢ N : τ
(T¬) T ⊢ θ : B

T ⊢ ¬θ : B
(T::)

T ⊢ e : τ ′ e : τ ′ ⇝⇝ τ

T ⊢ (e :: τ) : τ

(TO)

T ⊢ e1 : τ1 T ⊢ e2 : τ2 O ∈ OA ∪ OC

resolve(e1, τ1, e2, τ2, O) = τ3 × τ4 → τ5

T ⊢ e1 O e2 : τ5

T ⊢ β : T ′
(Tβ)

∀i.T ⊢ ei : τi unique(Ni)

T ⊢ ei asNi : Ni 7→ τi

Γ ⊢ Q : T

(Tπ)
Γ ⊢ Q : T clean(T) ⊢ β : T ′

Γ ⊢ πβ(Q) : T ′ (Tσ)
Γ ⊢ Q : T T ⊢ θ : B

Γ ⊢ σθ(Q) : T

(T×)
ℓ(Γ,Q1) ∩ ℓ(Γ,Q2) = ∅ Γ ⊢ Q1 : T1 Γ ⊢ Q2 : T2

Γ ⊢ Q1 ×Q2 : T1, T2
(TR)

Γ (R) = T

Γ ⊢ R : T

(TOS)

Γ ⊢ πβ1(Q1) : T1 Γ ⊢ πβ2(Q2) : T2

biconv∗(β1, T1, β2, T2) = T OS ∈ {∪,∩,−}

Γ ⊢ πβ1(Q1) OS πβ2(Q2) : T
(Tε)

Γ ⊢ Q : T

Γ ⊢ ε(Q) : T

Fig. 3: Type System of TRAF. Abstract operators are highlighted in gray.

3.3 Type System

The type system of TRAF is presented in Figure 3, and in the following, we
briefly explain the rationale behind each rule. Boxes in gray indicate abstract
operators, and we can provide specific implementations for modeling an engine
(Section 3.2).

Expressions. Rule (Tv) assigns types to values based on the specific database
engine (the ty operator in the grey box). For instance, in PSQL, integers are typed
as Z and literal strings as ?, but in SQLite, both are typed as ?. Rule (TN) as-
signs the type τ to the column name N if N is mapped to τ in the relation type
T.

Rule (T::) assigns the type τ to an ascription e :: τ if the following conditions
are met: (1) the expression e must be well-typed for some τ ′; (2) the explicit
cast of e to τ (engine-dependent, thus grey box) is checked to rule out explicit
casts that are known to always fail at runtime. For example, the attempt to cast
'hi' to Z ('hi' :: Z) is rejected in PSQL, while casting '1' to Z is accepted in
both PSQL and SQLite.

Rules (TO), (TOB) and (T¬) type operations. (TOB) and (T¬) type boolean op-
erations as usual. The interesting case is rule (TO) that types arithmetic and

418 W. Ye et al.

string operations. Based on the types of e1 and e2 and operation O, the (TO)
rule searches for the best candidate type signature for the given operation, taking
into consideration that an operation might be overloaded with multiple types.
It involves the operations resolve and ty that are engine-dependent. If a single
candidate function type is identified, the expression is typed; otherwise, it is
considered ill-typed. Note that types τ3 and τ4 do not need to coincide with τ1
and τ2 as arguments can be cast to different types. For instance, in the case of
the query SELECT 1+1 FROM P both PSQL and SQLite choose numeric addition
(Z× Z → Z). However, when dealing with strings (e.g. SELECT 'a' + 'b' FROM

P) PSQL rejects the query because it cannot choose a best candidate operator,
but SQLite instantiates the query with numeric addition, implicitly casting both
string arguments to integers.

Rule (Tβ) is used to type an aliased expression β. We use the notation Ai

to denote a list A1, . . . , An. Under T, every expression ei yields a type τi. Sub-
sequently, the type of the aliased expression as a whole is a relation type, where
each name Ni is mapped to the type τi of their corresponding subexpression ei.
Additionally, we use metafunction unique(.) to ensure that names are unique.

Queries. Rule (TR) assigns a relation type to relation name R according to
schema environment Γ . Rule (Tπ) types πβ(Q) based on the type of Q and that
of the aliased expression β, which is typed under clean(T) to remove unknown
occurrences. For instance, in PSQL, SELECT '1' + 1 FROM P runs successfully, but
SELECT C + 1 FROM (SELECT '1' AS C) B is rejected statically: the first query '1'
has type unknown ?, which can be cast to integer, whereas in the second query,
the unknown type ? is transformed to String disallowing the implicit cast to
integer.

Rule (Tσ) first typechecks the subquery, resulting in a relation type T. Then,
the condition must be successfully typed as boolean under the context of T (con-
sidering that the condition may reference columns from the subquery). Finally,
the selection operation is assigned the same type as the subquery T. Rule (T×)
types cross products using the concatenation of the relation types of both sub-
queries, ensuring that the sets of names in each subquery are disjoint. The list
of column names of a query Q is extracted using function ℓ(Γ,Q), and defined
as:

ℓ(Γ,R) = Ni where Γ (R) = Ni 7→ τi

ℓ(Γ,Q1 ×Q2) = ℓ(Γ,Q1), ℓ(Γ,Q2)

ℓ(Γ,Q1 OS Q2) = ℓ(Γ,Q1) where OS ∈ {∪,∩,−}; (*)

ℓ(Γ, σθ(Q)) = ℓ(Γ,Q)

ℓ(Γ, πβ(Q)) = ℓ(Γ, β)

ℓ(Γ, β, e asN) = ℓ(Γ, β), ℓ(Γ, e asN)

ℓ(Γ, e asN) = N

Rule (*) follows standard engine usage of using the left schema of a set expression
as output schema.

Elucidating Type Conversions in SQL Engines 419

Rule (TOS) deals with set operations (union, intersection, and difference)
which require special attention. Usually, it is assumed that the names, num-
ber of columns, and types of the columns in the subqueries match. In prac-
tice, the column names do not necessarily match, but number of columns and
types must align. To achieve this, many engines perform implicit casts between
the columns of the subqueries to align their types. In particular, string literals
are analyzed to check the plausibility of casts. For instance in PSQL, (SELECT
'1.1' AS A FROM P) INTERSECT (SELECT 1.1 AS A FROM P) runs successfully, re-
sulting in a non-empty result, whereas (SELECT CAST(Age AS TEXT) AS A FROM

P) INTERSECT (SELECT Age FROM P) is rejected before execution. To deal with
these special cases, and without loss of generality, we require that both sub-
queries within a set operation must be projections in order to verify column
casts. Therefore, the rule first typechecks both projections. Second, it examines
whether the lists of aliased expressions can be implicitly cast between each other,
taking their relation types into account. Finally, if this cast is feasible, the tar-
get relation type is captured and used to typecheck the whole set operation. To
check casts between lists of aliased expressions, we use the biconv∗ operation
defined as follows:

biconv∗(e asN,N 7→ τ, e′ asN ′, N ′ 7→ τ ′) = N 7→ biconv(e, τ, e′, τ ′)

This operation returns a relation type, where each name N is mapped to the
application of abstract operator biconv over each pair of expressions and their
types. We select N, the name of the left subquery, as it is a more commonly-
adopted practice in various database engines. This partial operator determines
the optimal implicit type cast for a set operator applied to two columns of (pos-
sibly) different types, returning one of the two types as a result. The expressions
are provided to the function to rule out casts that are known to always fail during
evaluation. For instance, PSQL accepts query (SELECT '1' AS A, 1 AS B FROM

R) UNION (SELECT 2 AS A, '2' AS B FROM R), as both '1' and '2' can be cast to
integers; but rejects (SELECT '1.1' AS A FROM R) UNION (SELECT 1 AS A FROM R)

as '1.1' cannot be implicitly cast to an integer (note that in PSQL, implicit casts
from integers to strings are not allowed).

3.4 Cast Insertion

Recall from Figure 1 that to avoid the complexity of dealing with implicit
casts during runtime, before execution, in TRAF we transform each implicit
cast to an explicit cast. For instance, a PSQL query SELECT '1' + 1 AS A FROM

R is transformed to SELECT CAST('1' AS INT) + 1 AS A FROM R, which in TRAF
corresponds to the elaboration from π'1'+1 as A(R) to π('1'::Z)+1 as A(R).

Figure 4 presents an excerpt of the explicit cast insertion rules; the complete
rules can be found in the extended version. The rules are type directed, meaning
that (1) we only elaborate well-typed terms, and (2) we use type information
during elaboration. Like for typing, elaboration rules are defined inductively and
grouped in three categories: for general and aliased expressions, and for queries.

420 W. Ye et al.

T ⊢ e : τ ⇝ e′ (Ev)
T ⊢ v : τ

T ⊢ v : τ ⇝ v :: τ

(EO)

T ⊢ e1 : τ1 ⇝ e′1 T ⊢ e2 : τ2 ⇝ e′2
O ∈ {<,=,+} resolve(e1, τ1, e2, τ2, O) = τ3 × τ4 → τ5

T ⊢ e1 O e2 : τ4 ⇝

insert(insert(e′1, τ3, O) O insert(e
′
2, τ4, O), τ5, O)

Γ ⊢ Q : T ⇝ Q′

(EOS)

Γ ⊢ πβ1(Q1) : T1 ⇝ πβ′
1
(Q′

1) Γ ⊢ πβ2(Q2) : T2 ⇝ πβ′
2
(Q′

2)

biconv∗(β1, T1, β2, T2) = T OS ∈ {∪,∩,−}

e1 = insert∗(β′
1, T, OS) e2 = insert∗(β′

2, T, OS)

Γ ⊢ πβ1(Q1) OS πβ2(Q2) : T ⇝ πe1(Q
′
1) OS πe2(Q

′
2)

Fig. 4: TRAF Cast Insertion (excerpt). Abstract operators are highlighted in gray.

Most elaboration rules directly follow their corresponding typing rule. Judgment
T ⊢ e : τ ⇝ e′ represents that expression e typed as τ under relation type T is
elaborated to e′. Judgment Γ ⊢ Q : T ⇝ Q′ is defined analogously.

Rule (Ev) inserts an explicit cast to the type of each value. This is especially
relevant for engines like SQLite where some values need to be tagged as unknown.
In SQLite, all constants are considered to be of type unknown, unless the constant
is fetched from a table. This is important at runtime, as a 1 might behave
differently than CAST(1 AS INT). For example, the expression '0' < 1 evaluates
to 0. To facilitate this special case, the expression is elaborated to '0' :: ? < 1 :: ?.

Rule (EO) introduces explicit casts based on the operation and the best candi-
date type. Specifically, we insert casts for both operands to match their expected
corresponding domain types and also insert a cast in the result of the operation
to the expected codomain type. Certain engines, like SQLite, do not insert ex-
plicit casts for comparison operations. To achieve this, we use the insert abstract
operator.

Rule (EOS) elaborates set operations by inserting casts to the output type of
biconv∗. This is done using the insert∗ operation defined as

insert∗(e asN,N 7→ τ, OS) = insert(e, τ, OS) asN

. For instance, for PSQL, query (SELECT '1' FROM R) INTERSECT (SELECT 1 FROM

R) is elaborated to (SELECT CAST('1' AS INT) FROM R) INTERSECT (SELECT CAST(1

AS INT) FROM R).

3.5 Dynamic Semantics

Figure 5 presents the dynamic semantics of TRAF, which differs from the ones
of Guagliardo and Libkin [19] (GL) as follows. First, TRAF dynamic semantics
are defined over a relational algebra, whereas GL uses SQL syntax to support

Elucidating Type Conversions in SQL Engines 421

JRKD,Γ = ok D (R) (RR)

JQ1 OS Q2KD,Γ = do
{
t1 ← JQ1KD,Γ ; t2 ← JQ2KD,Γ ;ok t1 OS t2

}
(ROS)

Jπβ(Q)KD,Γ = do
{
t ← JQKD,Γ ; ⌈{{JβKηr

ℓ(Γ,Q)
, . . . , JβKηr

ℓ(Γ,Q)︸ ︷︷ ︸
k times

| r ∈k t}}⌉
}

(Rπ)

Jσθ(Q)KD,Γ = do
{
t ← JQKD,Γ ; ← ⌈{{JθKηr

ℓ(Γ,Q)
| r ∈k t}}⌉;

ok {{r, . . . , r︸ ︷︷ ︸
k times

| r ∈k t ∧ JθKηr
ℓ(Γ,Q)

}}
} (Rσ)

Jε(Q)KD,Γ = ε(JQKD,Γ) (Rε)

Je asNKη = JeKη (Ras)

Jβ, e asNKη = do
{
r ← JβKη ; v ← JeKη ;ok r, v

}
(Rβ)

JNKη = ok η(N) (RN)

JvKη = ok v (Rv)

Jv :: τKη =

∣∣∣∣∣ok v′ if cast(v, τ) = v′

error otherwise
(Rv ::)

Je :: τKη = do
{
v ← JeKη ; Jv :: τKη

}
where e ̸= v (Re ::)

Jθ1 OB θ2Kη = do
{
b1 ← Jθ1Kη ; b2 ← Jθ2Kη ;ok b1 OB b2

}
(ROB)

J¬θKη = do
{
b ← Jθ1Kη ;ok ¬b

}
(R¬)

Je1 O e2Kη = do
{
v1 ← Je1Kη ; v2 ← Je2Kη ;ok apply(O, v1, v2) O ∈ OA ∪ OC

}
(RO)

Fig. 5: Dynamic Semantics of TRAF. Abstract operators are highlighted in gray.

extra features. Second, and more importantly, as some casts may be invalid, the
dynamic semantics must deal with the possibility of runtime errors. For instance,
in PSQL the query SELECT CAST('s' as INT) FROM R (σ's'::Z(R)) evaluates to an
error.

To concisely account for the possibility of runtime errors, we present the
dynamic semantics in monadic style in order to streamline the handling of er-
rors [37]. The monadic presentation of computations that may fail consists in
so-called “optional” values: either an actual value tagged with ok , or error
to denote an error. The sequential composition is given in a do block (e.g.
do

{
A;B;C

}
). Errors are transparently propagated through such sequences: the

evaluation returns ok v if all steps in a do block (e.g. A,B, and C) evaluate
successfully, or error if one step in the sequence evaluates to error.

There are four categories of evaluations : JQKD,Γ to reduce queries, JeKη
to reduce expressions, JβKη to reduce aliased expressions, and JθKη to reduce
boolean expressions. The evaluation of a query is parametrized by a database
D, which maps relation names R to tables t. We use r ∈k t to denote that r
appears k times in t. The other categories of evaluation are parametrized by an
environment η , which maps column names N to values v. Intuitively, this envi-

422 W. Ye et al.

ronment is used to extract the value associated with a column name for a given
row. For instance, consider a relation of persons P(Name 7→ String, Age 7→ Z), and
a table {('Bob', 10), ('Alice', 20)}. Then, for the first row, η(Name) = 'Bob' and
η(Age) = 10.

Queries. The basic case is Rule (RR), which evaluates the name of a relation
yielding the table associated to that name in database D. Rule (ROS) evaluates
set operations by first reducing the subqueries, then combining the resulting
tables. Rule (Rπ) starts by evaluating subquery Q. If the result is successful (a
table t), then for each row r that appears k times in t, we try to project columns
as dictated by β, and duplicate the result k times. To do this, we evaluate β
under environment ηrℓ(Γ,Q) (similarly to [19], ηr,v

Ni,N
= ηr

Ni
, N 7→ v and η·· = ·).

This environment is formed by matching corresponding column names of Q with
the values of r. Finally, as the evaluation of aliased expressions can also produce
errors, we lift the bag of optional rows S to an optional bag of rows using the
⌈·⌉ function defined as: ⌈S⌉ = error, when error ∈ S; and ok {{r | (ok r) ∈ S}}
otherwise.

Rule (Rσ) follows a similar approach by first reducing the subquery Q. If
the result is successful (yielding table t), we proceed to test the reduction of the
condition θ for each row. We employ a strategy akin to that of (Rπ), but in this
case, the resulting bag of booleans is unused (binding the resulting in variable
“ ”). This way, in the third instruction, we can be confident that the evaluation
of the conditions does not result in errors. Finally, we filter the rows from table t
that satisfy the given condition. The last rule for queries (Rε) removes duplicates
from subquery using the function ε(·).

Expressions. Rule (Ras) evaluates a single aliased expression by evaluating
the subexpression e and disregarding the name N. Rule (Rβ) applies when we
are evaluating multiple aliased expressions. Initially, it recursively reduces the
sublist to a row r, and then the head of the list to a value v, resulting in a new
row r, v.

Rule (RN) successfully evaluates a column name N to its corresponding
value in η . Rule (Rv) successfully evaluates values to themselves. Rule (Rv ::)
attempts to cast a value into a value of a different type using the cast function.
For instance, in SQLite, the expression CAST('hi' as INT) evaluates to 1, whereas
in PSQL is not defined. If the function is defined for the given value and type,
the resulting value is returned; otherwise, an error is raised. Rule (Re::) applies
to subexpressions that are not already values. It first reduces the subexpression
to a value, and then casts the value using rule (Rv::).

Rules (ROB), (R¬), and (RO) operate in a similar fashion. First, each subex-
pression is reduced, then the resulting values are combined using the specific op-
eration at hand. For arithmetic and comparison operations, the exact operation
is performed using the apply operation. For instance, in PSQL, the expression
'0' < 1 evaluates to true, whereas in SQLite, it yields false.

Elucidating Type Conversions in SQL Engines 423

Basic definitions

ty (n) = Z ty (d) = R ty (s) = ?

insert(e, τ, O) = e :: τ clean(T) = T[String/?]

ty (OC) = {Z× Z→ B,R× R→ B,
String × String→ B}

ty (+) = {Z× Z→ Z,R× R→ R}
apply(O, v1, v2) = v1 O v2

τ ⇒ τ Z⇒ R

τ ⇒ τ ′

e : τ ⇝ τ ′

icast(v, τ) = v′

v : ?⇝ τ

biconv(e1, τ1, e2, τ2) = τ

e1 : τ1 ⇝ τ2
biconv(e1, τ1, e2, τ2) = τ2

e2 : τ2 ⇝ τ1
biconv(e1, τ1, e2, τ2) = τ1

icast(v, τ) = v′

icast(‘n’,R) = n

icast(n,R) = n

icast(v, ty (v)) = v

icast(‘v’, ty (v)) = v v ̸= s

cast(v, τ) = v′

cast(v,Z) = ⌊v⌋ v ∈ R
cast(v, String) = str(v) v ̸= s

cast(v, τ) = icast(v, τ)

{m} = arg mini((cost(τ1, τ1i)) + (cost(τ2, τ2i)))
τ1 ⇒ τ1m τ2 ⇒ τ2m

bestCandidate(τ1, τ2, τ1i × τ2i → τ3i) = τ3m × τ4m → τ3m

cost(τ, τ) = 0 cost(Z,R) = 1 cost(String,Z) = 1 cost(String,R) = 1 cost(,) = 2

resolve(e1, τ1, e2, τ2, O) = τ
τ1 ̸= ? τ2 ̸= ?

bestCandidate(τ1, τ2, ty (O)) = τ3 × τ4 → τ5

resolve(e1, τ1, e2, τ2, O) = τ3 × τ4 → τ5
...

Fig. 6: The TRAF/PSQL Instantiation (excerpt)

4 Instantiating TRAF

In this section we illustrate how to instantiate TRAF for PSQL and SQLite. The
complete rules and the instantiations for three other engines (MSSQL, Oracle,
and MySQL) can be found in the extended version. In general, an instantiation
is achieved by providing specific definitions of the abstract operators that are
engine dependent (the grey boxes in the figures). We obtained these definitions
by exploring the documentation of each engine, and by conducting black-box
analyses interacting with each engine whenever the documentation was lacking
in details.

4.1 TRAF/PSQL

Figure 6 describes the TRAF/PSQL instantiation. PSQL is characterized by being
a strongly-typed SQL engine, meaning that it is more conservative than the rest.

424 W. Ye et al.

In many cases, if it cannot check the feasibility of casts, it rejects the query before
its execution.

For the type of values, reals are typed as R, integers to Z, and string literals to
?. The operator for removing unknown types replaces ? occurrences with String,
while leaving other types unchanged.8 The operator for inserting annotations
adds explicit casts regardless of the operation’s type. The candidate types of
a given operator is represented as sets of binary function types. Lastly, the
semantics of operations between values are passed to the real implementation
without any modifications.

Bidirectional implicit cast. Operator biconv is defined using the auxiliary
implicit type cast relation e : τ ⇝ τ ′. An expression e of type τ can be cast to τ ′

if either type τ can be implicitly cast to τ ′ (τ ⇒ τ ′), or if e is a value v of type
unknown ? (i.e. a string) and that value can be implicitly cast to some value v′

under type τ ′ (icast(v, τ ′) = v′).

Implicit type cast τ ⇒ τ ′ is only defined between identical types τ ⇒ τ,
or from integers to reals Z ⇒ R. For instance, (SELECT 1 FROM R) INTERSECT

(SELECT 1.0 FROM R) is accepted and evaluates to {1.0}, since Z (the type of 1)
can be implicitly cast to a R (the type of 1.0). Implicit value cast icast(v, τ) = v′

is defined for extracting numbers from strings, but not viceversa.

Explicit cast. In addition to what an implicit value cast can do, explicit
(value) casts cast(v, τ) = v′ support casts from real numbers to integers by re-
moving the decimals, and from non-string values to strings by enclosing them
in quotes. For instance, SELECT CAST('1.1' AS DOUBLE) FROM R is accepted and
evaluates to 1.1, but SELECT CAST('1.1' AS INT) FROM R is rejected by the type-
checker.

Overload resolution. The definition of the resolve operator is divided in
four cases. The general case arises when the types of the two expressions are
not known. Function bestCandidate is used to determine the best candidate.
We model this function by initially calculating the sum of the type differences
between the corresponding types of the expression and the domain of each can-
didate. The type difference τ − τ ′ quantifies the “cost” of changing type τ to
τ ′: it yields a value of 0 if both types are identical, 1 when transitioning from
an integer to a real or from a string to a number, and 2 in all other cases. If
there are ties, and more than one type is selected, then the function is not de-
fined. Furthermore, both types must satisfy the implicit cast relation with their
corresponding type from the domain of the chosen best candidate. For instance,
for query SELECT 1 + 1.1 FROM R, the + operation has two possible candidates:
Z × Z → Z, and R × R → R. The best candidate in this case is R × R → R,
as both operands can be implicitly cast to reals. The remaining cases are anal-
ogous. When only one type is unknown, the best candidate function is applied
using the other known type in both positions. Additionally, the expression of
unknown type is implicitly cast to the chosen type to rule out potential errors.
Finally, if both types are unknown, they are assumed to be strings when look-
ing for the best candidate. For example, in SELECT '1' + 1.1 FROM R, the best

8 Notation C[A/B] denotes type C where occurrences of B have been replaced by A.

Elucidating Type Conversions in SQL Engines 425

Basic definitions
ty (v) = ? dty (w :: ?) = ? dty (r) = R dty (s) = String

insert(e, τ, OC) = e insert (e, τ,+) = e :: τ

ty (OC) = {?× ?→ ?,R× R→ ?, String × String→ ?}
ty (+) = {R× R→ ?}

apply(+, v1, v2) = v1 + v2

apply(OC, v1, v2) = compare(|v′1|, |v′2|) :: ?
where resolve(v1, dty (v1), v2, dty (v2), ty (OC)) = τ1 × τ2 → τ3,

icast(v1, τ1) = v′1, icast(v2, τ2) = v′2,

|w :: ?| = w |w| = w

icast(v, τ) = v′ ...
icast(s, τ) = icast(number(s), τ) τ ∈ {Z,R}
icast(s, τ) = s number(s) is not defined.

cast(v, τ) = v′
...

cast(s, τ) = cast(number(nprefix (s)), τ) τ ∈ {Z,R}
cast(s, τ) = 0 number(nprefix (s)) is not defined, τ ∈ {Z,R}

resolve(e1, τ1, e2, τ2, O) = τ

{m} = arg mini((cost(τ1, τ1i)) + (cost(τ2, τ2i)))

resolve(e1, τ1, e2, τ2, τ1i × τ2i → τ3i) = τ3m × τ4m → τ3m

cost(τ, τ) = 0 cost(Z,R) = 0 cost(String,R) = 1 cost(?, τ) = 1 cost(,) = 2

Fig. 7: The TRAF/SQLite Instantiation (excerpt)

candidate type is R × R → R, as the implicit cast from '1' to real is possible.
On the contrary, query SELECT '1' + '1' FROM R is rejected by the typechecker
because there is more than one candidate available (int and real versions).

4.2 TRAF/SQLite

SQLite is one of the most flexible SQL engines: type enforcement is not manda-
tory, and types on columns are optional. However, SQLite attempts its best
effort to perform casts without ever raising a type error at runtime. To capture
this kind of flexibility, we model the type of values as ? and define all abstract
operators as total functions. Figure 7 describes the TRAF/SQLite instantiation.

Statically, in SQLite the type of every value is unknown. We introduce a
dynamic type operator dty (v) to obtain precise type information during the
evaluation of comparisons. The type of a value, initially unknown, may be re-
fined at runtime to a more precise type. The operator for removing unknown
types clean acts as the identity function, since unknown values have special
meaning. For instance 1 :: ? < '0' is true, but 1 < '0' is false. The operator for

426 W. Ye et al.

inserting annotations only inserts explicit casts for arithmetic operations, while
for comparison operations, it behaves as the identity function.

The dynamic semantics for comparison is more involved. First, the best can-
didate type is searched, using the dynamic type information of the operands.
Then, once the best candidate is found, both operands are implicitly cast to
the corresponding types. Finally, the cast values, stripped of (potentially) casts
to unknown, are compared using the compare(w1, w2) function defined as 1 if
(dty (w1) = dty (w2) ∧ w1 < w2) ∨ (dty (w1) < dty (w2)); 0 otherwise. If the
dynamic types of the operands are equal, then a regular comparison operation
is performed. If the types are different then the types are compared using an
arbitrary hierarchy such that Z = R < String.

To illustrate, consider examples (1) SELECT '0' < 1 FROM R, and (2) SELECT

'0' < CAST(1 AS INT) FROM R. The first example evaluates to 0. Since the (Ev)
elaboration rule inserts an explicit cast on every value, both values are cast
to ?. Consequently, the chosen candidate for < is ? × ? → ?, and the implicit
cast leaves them untouched. Finally, as the dynamic type of both operands, with
annotations removed, is String and R respectively, the comparison function yields
0 as result. The second example evaluates to 1. In the process of elaboration,
the left expression is cast to the unknown type, while the right expression is cast
to an integer type. During the actual evaluation, the most suitable candidate
is determined to be R × R → ?, which implies an implicit cast of both values
into numerical values 0 and 1, respectively. As both casted values share the same
dynamic type, a standard comparison is carried out, resulting in 1.

Bidirectional implicit cast. For the case of SQLite, the operator biconv
always yields the unknown type for any pair of types and expressions. Here
the relation is always defined. Consequently, for implicit casts from strings to
numbers, when the string is not a valid number, the result is the same string.

Explicit cast feasibility. Operator e : τ ⇝⇝ τ ′ allows casting any expression
of type τ to any type τ ′.

Explicit cast. This operator is defined almost identically to implicit casts,
except when the expression is a string. In this case, the cast is performed by
extracting the largest numeric prefix from the string and then casting it to
the required number type. If there is no numeric prefix, then the cast yields
0. For instance, SELECT CAST('12.3hi' AS INT), CAST('hi') FROM R evaluates to
(12, 0).

Overload resolution. There is only one rule for overloading resolution
resolve. It yields the first best candidate found, using the type difference op-
erator. Type difference yields 0 when the types are the same or when converting
from integer to real, and 1 when converting either from an unknown type to any
other type or from string to real.

4.3 SQLite ↔ PSQL Translation Examples

Given the design of TRAF/PSQL and TRAF/SQLite, we now illustrate some ex-
amples of SQL query translations between their corresponding database engines.

Elucidating Type Conversions in SQL Engines 427

We show the effect of understanding the type semantics of each engine to justify
translations that might seem counterintuitive.

From SQLite to PSQL Consider example E3, SELECT '1.1' + 1 FROM R. This ex-
ample runs successfully in SQLite and yields {{2.1, 2.1, 2.1}}. This is expected
due to the candidates ty (+) = {R × R → ?}, resolve('1.1', ?, 1, ?, ty (+)) =
R× R → ?, and

cast('1.1',R) = cast(number(nprefix ('1.1')),R)
= cast(number('1.1'),R)
= cast(1.1,R) = 1.1

However, this query does not typecheck in PSQL. Addition is only defined for
numeric values (ty (+) = {Z× Z → Z,R× R → R}), and resolve('1.1', ?, 1,Z,
ty (+)) requires icast('1.1',Z) to be defined (which it is not). What is defined
is the implicit cast to a real icast('1.1',R). We can force such cast with the
following translation that preserves the same behavior: SELECT CAST('1.1' AS

DECIMAL(1)) + 1 FROM R.
Other examples such as E10, SELECT 1 FROM R WHERE '1' < 2, are more chal-

lenging. In SQLite, this query yields an empty result because strings are consid-
ered larger than numbers. A straightforward translation to PSQL that maintains
this behavior is SELECT 1 FROM R WHERE False. However, a more general approach
involves following the compare function, performing type testing using pg_typeof

and then applying dynamic casts accordingly. For instance, the comparison a < b

could be translated to:

(pg_typeof(a) = pg_typeof(b) AND

CAST(a AS pg_typeof(a)) < CAST(b AS pg_typeof(b))) OR

(pg_typeof(a) = 'number ' AND pg_typeof(b) = 'text')

However, dynamic casts such as CAST(a AS pg_typeof(a)) are not supported
natively by PSQL.

From PSQL to SQLite Consider once again example E10, SELECT 1 FROM R

WHERE '1' < 2, but now in the opposite direction. In PSQL, this query returns
{{1, 1, 1}} (the best candidate type is Z × Z → B). Translating this query to
SQLite requires mimicking the comparison behavior of PSQL. According to the
compare function, both arguments need to have the same dynamic type. This
can be achieved either by casting the left operand: SELECT 1 WHERE CAST('1' AS

INT) < 2, or surprisingly, by casting the right operand: SELECT 1 WHERE '1' <

CAST(2 as INT). By casting the right operand, resolve chooses R×R → ? as best
candidate, thus implicitly casting both operands to a number.

Future work may involve an automatic translation mechanism, which takes
into account their type semantic and operational differences. Such mechanism
would significantly reduce the manual effort required to adapt queries and help
ensure consistency.

428 W. Ye et al.

R1: Every operator must be deterministic.
R2: biconv(e1, τ1, e2, τ2) yields either τ1 or τ2.
R3: resolve(e1, τ1, e2, τ2, τ3) must be contained in τ3.
R4: If cast(v, τ) = v′, then the (cleaned) type of v′ must be τ.
R5: If resolve(e1, τ1, e2, τ2, τ3) = τ4 × τ5 → τ6, Je1Kη ̸= error and Je2Kη ̸= error then

Je1 :: τ4Kη ̸= error and Je2 :: τ5Kη ̸= error.

R6: If biconv(e1, τ1, e2, τ2) = τ, Je1Kη ̸= error and Je2Kη ̸= error then

Je1 :: τKη ̸= error and Je2 :: τKη ̸= error.

R7: If resolve(e1, τ1, e2, τ2, τ3) = τ4 × τ5 → τ6 then e1 : τ1 ⇝⇝ τ4 and e2 : τ2 ⇝⇝ τ5.
R8: If biconv(e1, τ1, e2, τ2) = τ then e1 : τ1 ⇝⇝ τ and e2 : τ2 ⇝⇝ τ.
R9: Either clean(T) = T[String/?] or clean(T) = T.

R10: If apply(O, v1, v2) then given values of the right types, primitive functions, such as
boolean or arithmetic operations, will never fail.

Fig. 8: Requirements that abstract operator must meet to satisfy the properties.

5 Properties

Based on the core relational algebra of TRAF, we can establish metatheoretical
results for each formalized engine, consisting of lemmas and theorems regarding
queries and their evaluation. For simplicity, we will refer to each engine by the
name of its corresponding TRAF formalization. Specifically, we can articulate the
formal distinctions among various engines, and pinpoints the exact requirements
that abstract operator (e.g. for new engines) must meet to satisfy the properties.
This aids us in better comprehending the process of transforming queries from
one engine to another.

To state these theorems, we need several new definitions, in particular a way
to typecheck rows r, tables t and databases D:

⊢ v : τ

⊢ v : (N 7→ τ)

⊢ r : T ⊢ v : τ

⊢ r, v : T, (N 7→ τ) ⊢ · : T

∀r ∈ t. ⊢ r : T
⊢ t : clean(T)

∀R ∈ dom(D). ⊢ D(R) : Γ (R)

⊢ D : Γ

A row is well-typed if every value is typed to its corresponding type in T. A table
is typed T if every row is typed as T. An empty row is typed to any relation type
T. A database is typed Γ , if every relation in D is typed to its corresponding type
in Γ . Note that these rules are non-deterministic, so any value can be associated
to any name. The proofs require some properties about the implementation of
abstract operators shown in Figure 8.

Assuming R1, R2 and R3, any instantiation of TRAF is type safe, mean-
ing that well-typed queries either reduce to a table or raise a controlled type
error, i.e., an error captured and raised by the language upon detecting an in-
consistency. In other words, the evaluation of well-typed queries does not raise
uncontrolled errors, such as getting stuck. For instance, an ill-type query, or

Elucidating Type Conversions in SQL Engines 429

SELECT Foo FROM P, where Foo is not defined in P, gets stuck as JFooKη does not
evaluate further.

Theorem 1 (Type Safety). If R1, R2 and R3 hold, ∀T Q D, if Γ ⊢ Q :
T and ⊢ D : Γ then (∃t, JQKD,Γ = t) ∨ (JQKD,Γ = error).

Assuming also R4, a stronger theorem called type soundness states that, in
addition to type safety, the resulting table indeed has the type of the query.

Theorem 2 (Type Soundness). If R1, R2, R3 and R4 hold, ∀T Q D, if Γ ⊢
Q : T and ⊢ D : Γ then (∃t, T ′.JQKD,Γ = t,⊢ t : T ′ and clean(T ′) = clean(T)) ∨
(JQKD,Γ = error).

The use of clean(·) is exclusively for PSQL, and for cases such as SELECT

CAST('hi' as String) as A from R. This query of type A 7→ String evaluates to
{'hi', ...}, typed as A 7→ ? (literal strings are typed ?), but clean(String) =
clean(?) = String.

Type safety is satisfied by every engine we consider, but type soundness is
satisfied by all except SQLite. This is because SQLite does not satisfy R4. For
instance, in SQLite, SELECT CAST(1 as INT) AS A FROM R has type A 7→ Z, but its
evaluation is typed A 7→ ?. Also, SQLite permits storing string values in integer
columns.

Moreover, PSQL, MySQL and SQLite satisfy a theorem that states that if the
programmer does not use any explicit cast in a well-typed query, then the query
evaluates without error. To state this theorem we use the cast-free metafunction
CF(Q), which is defined when Q does not have explicit casts of the form e :: τ
(definition in the extended version).

Theorem 3 (Cast-free queries do not fail). If R1, R5, R6, R9 and R10
hold, CF(Q), ⊢ D : Γ and Γ ⊢ Q : T ⇝ Q′ then JQ′KD,Γ ̸= error.

Neither MSSQL nor Oracle satisfy this property. Specifically, MSSQL does
not satisfy R5 and R6, and Oracle does not satisfy R5. To illustrate why, let us
consider table R = {('1')}, schema R 7→ (A 7→ String), and query SELECT A

+ 1 FROM R. This query does not typecheck in PSQL, and evaluates successfully
in other engines. But with one more row to R: {('1'), ('hi')}, the same query
evaluates to a runtime error in MSSQL and Oracle.

Regarding cast insertion, the type of query translation, and the translation
is unique:

Theorem 4 (Cast insertion is a type-preserving function). If R1, R2,
R4, R7, R8 and R9 hold, and Γ ⊢ Q : T then there exists a unique Q′ such that
Γ ⊢ Q : T ⇝ Q′ and Γ ⊢ Q′ : T.

This theorem is satisfied by the five engines we studied.

430 W. Ye et al.

6 Experimental Validation

To validate the adequacy of the formalism and its instantiations, we adopt ap-
proaches similar to those used for the validation of formal models of Python [30],
JavaScript [29], and more closely related to our work, SQL [19], by testing against
real-world implementations. We develop PyTRAF, an implementation of TRAF
in Python, and create one instance for each of five engines. We generate multiple
random queries and verify that the results from the actual engine match those
obtained from the prototype.

We generate a total of 100, 000 random SQL queries for each engine, suc-
cessfully confirming that our design aligns with the behavior of each individual
engine. This process is challenging when dealing with engine-specific query op-
timizations. In particular, sometimes PyTRAF reports an error while the engine
returns a table. This discrepancy occurs due to avoidance of executing certain
subexpressions or subqueries that are prone to failure. For this reason, we di-
vided the validation in two categories: a termination-insensitive validation, and
a termination-sensitive validation9.

The termination-insensitive validation approach involves verifying that, if the
evaluation of a query in PyTRAF and in the engine result in tables, then these
tables must be equivalent. In PyTRAF, the query generation is parameterized by
the engine due to subtle discrepancies between engines For instance, MSSQL
and Oracle lack a boolean type and represent booleans using integers. To avoid
floating number precision mismatches, real numbers are represented as decimals
in both PyTRAF and the engines. Note that comparing real numbers using a
notion of closeness might be feasible, but it presents a greater challenge when
these results are then cast to strings. Finally, in MySQL, we had to cast some
operands of arithmetic operators to decimal to avoid precision issues. In addition,
we check whether a query that succeeds in PyTRAF will also succeed in the real
engine. We have observed that this is true for MySQL, MSSQL and SQLite,
but not for PSQL and Oracle. The reason for this discrepancy is that some
engines perform optimizations that affect the evaluation order, eagerly casting
aliased subexpressions in subqueries whose condition is always false, leading to
unsound results in the presence of effects such as cast errors. In other words,
the optimizations performed by the engines are sound only for “pure” queries
(those that do not fail). However, the impact of these optimizations on erroneous
queries appears to be overlooked by engine providers.

The termination sensitive validation approach is a stronger result. It involves
verifying that, if the evaluation of a query in PyTRAF yields a table, then evalu-
ation of the query in the engine results in an equivalent table. Furthermore, if a
query in PyTRAF reports an error, then the query in the engine also reports an

9 The names ”termination sensitive” (TS) and ”termination insensitive” (TI) are bor-
rowed from hyper-properties such as noninterference (NI). In NI, TI-NI means that
NI holds only when both executions terminate successfully, while TS-NI means TI-
NI plus equitermination. Therefore, TI validation means that the engine and model
coincide whenever they both don’t fail, while TS validation means that if one fails,
the other must fail as well.

Elucidating Type Conversions in SQL Engines 431

error. It is important to note that sometimes distinguishing between errors re-
sulting from type checking or evaluation solely by inspecting the engine’s output
might not be feasible. Consequently, if PyTRAF reports a type error (either stat-
ically or dynamically), we verify that the real engine throws any kind of errors.
To achieve this stronger validation, we had to perform several simplifications
(explained in the extended version) on the generation of queries because some
query optimizations prevent certain sub-expressions from being evaluated.

7 Related Work

Traditionally SQL has been implemented with some sort of either static typing
or syntactic checking, though the issue of type errors and type disciplines has
received little attention. Nonetheless, there are two lines of works that relate to
this work. In the Databases literature, the consideration of corner cases such
as NULLs and dynamically generated queries involves typing issues. Also, some
engines, like SQLite have “flexible” type systems. In Programming Languages,
type systems are a central topic, but SQL and databases have received little
attention. Both areas have been sources of inspiration and techniques for our
work.

Classical database literature. There are many works formalizing SQL
[8–10, 27]. Guagliardo and Libkin [19] developed a comprehensive formal se-
mantics for SQL whose core we follow here. Following the classic framework in
the area, they assume that all comparisons and operations are applied to ar-
guments of the right types. Therefore essentially they do not deal with typing
issues. Regarding errors in SQL, based on previous work [2, 33, 39], Taipalus et
al. [35] review SQL errors to build a unified error categorization. In further work,
Taipalus et al. [34] compares the error messages of the four most popular rela-
tional database management systems (MySQL, Oracle, PostgreSQL, and SQL
Server) in terms of error message effectiveness, effects, and usefulness, and error
recovery confidence. Our work does not deal with error messages, but instead
with detecting errors. Finally, regarding formalization, Benzaken et al. Ben-
zaken and Contejean [4] provide a Coq mechanised, executable, formal seman-
tics for a realistic fragment of SQL. Their coq formalization covers null values,
functions, aggregates, quantifiers and nested potentially correlated sub-queries.
Ricciotti and Cheney [31] complement and deepens the work of Guagliardo and
Libkin [19] by making the notions of their semantics and proof precise and formal
using Coq. [5] propose the first mechanically verified compiler (DBCert, using
Coq) for SQL queries. These works assume the precise matching of types and
therefore there are no implicit casts.

Flexible typing databases. A distinctive example is SQLite, the most
widely deployed database engine [21], which enjoys flexible typing. Data of any
type may be stored in any column of an SQLite table (except an INTEGER
PRIMARY KEY column, in which case the data must be integral) and columns
can be declared without any data type [12]. SQL queries are viewed as strings
and little error checking is done for dynamically-generated SQL query strings.

432 W. Ye et al.

Wassermann et al. [38] propose a static program analysis technique to verify
that dynamically-generated query strings do not contain type errors. Similar
to TRAF, they employ a type system to reject invalid dynamically-generated
queries. However, their focus does not lie in the formalism of dynamic semantics
or casts, and the evaluation uses the grammar of Oracle.

Strongly-typed queries. The development of programming language li-
braries and tools for type-checking queries has been extensively explored [3,13–
16,24–26,32]. However, the formalization of implicit and explicit type casts has
not been addressed. Additionally, these studies lack a practical exploration of
the varied behaviors induced by typing in industry-standard database engines.
From a formal perspective, significant progress has been made in the area of type
inference for relational algebra [7,28,36] and SQL [11,23]. In TRAF, we presume
the existence of a typed schema, and consider the definition of type inference as
an area for future exploration.

8 Conclusion

In this paper, we identify some discrepancies in behavior regarding the handling
of types both statically and dynamically in current SQL engines. This presents
practical problems (e.g. when porting queries among engines) that are challeng-
ing to address.

We demonstrated that addressing this issue is feasible by integrating a light-
weight typing system. Indeed, we present TRAF, a formal framework for a typed
relational algebra with support for implicit and explicit type casts. TRAF permits
to formally understand the behavior of different database engines; we validate
this expressiveness by providing five different instantiations.

Our framework highlights the necessary requirements for any concrete instan-
tiation to satisfy formal properties such as type safety and soundness, among
others. The typing discrepancies addressed shed light that certain apparently
minor design decisions of engines may lead to major changes in behavior. As
future work, we believe this initial step that constitutes our work should be ex-
tended to deal with discrepancies under query optimizations performed by many
practical engines. It would also be valuable to develop a technique that stan-
dardizes query behavior according to a specific database semantics model, by
inserting sufficient casts or other forms of disambiguation so that the query runs
correctly across different databases. Additionally, we could extend the scope to
encompass the casting behavior of various types; for example, how one system
handles casting an integer or float to a less precise decimal type may differ from
the approach of another system.

References

1. Converting mysql to postgresql (2020), https://en.wikibooks.org/wiki/

Converting_MySQL_to_PostgreSQL

https://en.wikibooks.org/wiki/Converting_MySQL_to_PostgreSQL
https://en.wikibooks.org/wiki/Converting_MySQL_to_PostgreSQL

Elucidating Type Conversions in SQL Engines 433

2. Ahadi, A., Behbood, V., Vihavainen, A., Prior, J., Lister, R.: Students’ syntac-
tic mistakes in writing seven different types of sql queries and its application to
predicting students’ success. In: Proceedings of the 47th ACM Technical Sympo-
sium on Computing Science Education. p. 401–406. SIGCSE ’16, Association for
Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/
2839509.2844640, https://doi.org/10.1145/2839509.2844640

3. Augustsson, L., Ågren, M.: Experience report: Types for a relational algebra li-
brary. SIGPLAN Not. 51(12), 127–132 (sep 2016). https://doi.org/10.1145/

3241625.2976016, https://doi.org/10.1145/3241625.2976016
4. Benzaken, V., Contejean, E.: A coq mechanised formal semantics for realistic sql

queries: Formally reconciling sql and bag relational algebra. In: Proceedings of the
8th ACM SIGPLAN International Conference on Certified Programs and Proofs.
p. 249–261. CPP 2019, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3293880.3294107, https://doi.org/10.
1145/3293880.3294107

5. Benzaken, V., Contejean, E., Hachmaoui, M.H., Keller, C., Mandel, L., Shinnar,
A., Siméon, J.: Translating canonical sql to imperative code in coq. Proc. ACM
Program. Lang. 6(OOPSLA1) (apr 2022). https://doi.org/10.1145/3527327,
https://doi.org/10.1145/3527327

6. Bhandari, H., Chitrakar, R.: Comparison of data migration techniques from sql
database to nosql database. J Comput Eng Inf Technol 9 6, 2 (2020)

7. Buneman, P., Ohori, A.: Polymorphism and type inference in database program-
ming. ACM Trans. Database Syst. 21(1), 30–76 (mar 1996). https://doi.org/
10.1145/227604.227609, https://doi.org/10.1145/227604.227609

8. Ceri, S., Gottlob, G.: Translating sql into relational algebra: Optimization, seman-
tics, and equivalence of sql queries. IEEE Transactions on Software Engineering
SE-11, 324–345 (1985), https://api.semanticscholar.org/CorpusID:22717180

9. Chu, S., Wang, C., Weitz, K., Cheung, A.: Cosette: An automated prover for
sql. In: Conference on Innovative Data Systems Research (2017), https://api.
semanticscholar.org/CorpusID:12408033

10. Chu, S., Weitz, K., Cheung, A., Suciu, D.: Hottsql: proving query rewrites with
univalent sql semantics. Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (2016), https://api.

semanticscholar.org/CorpusID:644867

11. Colazzo, D., Sartiani, C.: Precision and complexity of xquery type inference. In:
Proceedings of the 13th International ACM SIGPLAN Symposium on Principles
and Practices of Declarative Programming. p. 89–100. PPDP ’11, Association for
Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/
2003476.2003490, https://doi.org/10.1145/2003476.2003490

12. Gaffney, K.P., Prammer, M., Brasfield, L.C., Hipp, D.R., Kennedy, D.R., Patel,
J.M.: Sqlite: Past, present, and future. Proc. VLDB Endow. 15, 3535–3547 (2022),
https://api.semanticscholar.org/CorpusID:252066674

13. Gould, C., Su, Z., Devanbu, P.T.: JDBC checker: A static analysis tool for
SQL/JDBC applications. In: Finkelstein, A., Estublier, J., Rosenblum, D.S.
(eds.) 26th International Conference on Software Engineering (ICSE 2004), 23-
28 May 2004, Edinburgh, United Kingdom. pp. 697–698. IEEE Computer So-
ciety (2004). https://doi.org/10.1109/ICSE.2004.1317494, https://doi.org/
10.1109/ICSE.2004.1317494

14. Group, T.D.D.: Typechecking queries (2019), https://tpolecat.github.io/

doobie/docs/06-bChecking.html

https://doi.org/10.1145/2839509.2844640
https://doi.org/10.1145/2839509.2844640
https://doi.org/10.1145/2839509.2844640
https://doi.org/10.1145/2839509.2844640
https://doi.org/10.1145/2839509.2844640
https://doi.org/10.1145/3241625.2976016
https://doi.org/10.1145/3241625.2976016
https://doi.org/10.1145/3241625.2976016
https://doi.org/10.1145/3241625.2976016
https://doi.org/10.1145/3241625.2976016
https://doi.org/10.1145/3293880.3294107
https://doi.org/10.1145/3293880.3294107
https://doi.org/10.1145/3293880.3294107
https://doi.org/10.1145/3293880.3294107
https://doi.org/10.1145/3527327
https://doi.org/10.1145/3527327
https://doi.org/10.1145/3527327
https://doi.org/10.1145/227604.227609
https://doi.org/10.1145/227604.227609
https://doi.org/10.1145/227604.227609
https://doi.org/10.1145/227604.227609
https://doi.org/10.1145/227604.227609
https://api.semanticscholar.org/CorpusID:22717180
https://api.semanticscholar.org/CorpusID:12408033
https://api.semanticscholar.org/CorpusID:12408033
https://api.semanticscholar.org/CorpusID:644867
https://api.semanticscholar.org/CorpusID:644867
https://doi.org/10.1145/2003476.2003490
https://doi.org/10.1145/2003476.2003490
https://doi.org/10.1145/2003476.2003490
https://doi.org/10.1145/2003476.2003490
https://doi.org/10.1145/2003476.2003490
https://api.semanticscholar.org/CorpusID:252066674
https://doi.org/10.1109/ICSE.2004.1317494
https://doi.org/10.1109/ICSE.2004.1317494
https://doi.org/10.1109/ICSE.2004.1317494
https://doi.org/10.1109/ICSE.2004.1317494
https://tpolecat.github.io/doobie/docs/06-Checking.html
https://tpolecat.github.io/doobie/docs/06-Checking.html

434 W. Ye et al.

15. Group, T.K.D.: Kysely (2021), https://kysely.dev/
16. Group, T.P.D.: Pgtyped (2020), https://github.com/adelsz/pgtyped
17. Group, T.P.G.D.: Postgresql documentation (1996), https://www.postgresql.

org/docs/current/typeconv-boverview.html

18. Group, T.S.D.: Sqlines (2010), http://www.sqlines.com/online
19. Guagliardo, P., Libkin, L.: A formal semantics of sql queries, its validation, and

applications. Proc. VLDB Endow. 11(1), 27–39 (sep 2017). https://doi.org/10.
14778/3151113.3151116, https://doi.org/10.14778/3151113.3151116

20. Haas, S.W.: Erik peter bansleben . database migration : A literature review and
case study (2004), https://api.semanticscholar.org/CorpusID:17518212

21. Hipp., D.R.: Most widely deployed and used database engine. https://www.

sqlite.org/mostdeployed.html

22. Khan, S., Kalia, A., Dastjerdi, H.M., Nizamuddin, N.: Automated tool for nosql to
sql migration. In: Proceedings of the 7th International Conference on Information
Systems Engineering. p. 20–23. ICISE ’22, Association for Computing Machin-
ery, New York, NY, USA (2023). https://doi.org/10.1145/3573926.3573931,
https://doi.org/10.1145/3573926.3573931

23. Lin, W.: Type inference in SQL. Ph.D. thesis, Concordia University (2004)
24. Marlow, S., et al.: Haskell 2010 language report. Available online http://www.

haskell. org/(May 2011) (2010)
25. MIT: Ts-sql-query (2019), https://ts-bsql-bquery.readthedocs.io/
26. Necco, C.M., Nuno Olivera, J.: Toward generic data processing. In: XI Congreso

Argentino de Ciencias de la Computación (2005)
27. Negri, M., Pelagatti, G., Sbattella, L.: Formal semantics of sql queries. ACM Trans.

Database Syst. 16(3), 513–534 (sep 1991). https://doi.org/10.1145/111197.

111212, https://doi.org/10.1145/111197.111212
28. Ohori, A., Buneman, P.: Type inference in a database programming language.

In: Proceedings of the 1988 ACM Conference on LISP and Functional Program-
ming. p. 174–183. LFP ’88, Association for Computing Machinery, New York,
NY, USA (1988). https://doi.org/10.1145/62678.62700, https://doi.org/10.
1145/62678.62700

29. Park, D., Stefanescu, A., Rosu, G.: KJS: a complete formal semantics of javascript.
In: Grove, D., Blackburn, S.M. (eds.) Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015. pp. 346–356. ACM (2015). https://doi.org/10.1145/
2737924.2737991, https://doi.org/10.1145/2737924.2737991

30. Politz, J.G., Martinez, A., Milano, M., Warren, S., Patterson, D., Li, J., Chi-
tipothu, A., Krishnamurthi, S.: Python: the full monty. In: Hosking, A.L., Eug-
ster, P.T., Lopes, C.V. (eds.) Proceedings of the 2013 ACM SIGPLAN Interna-
tional Conference on Object Oriented Programming Systems Languages & Appli-
cations, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-
31, 2013. pp. 217–232. ACM (2013). https://doi.org/10.1145/2509136.2509536,
https://doi.org/10.1145/2509136.2509536

31. Ricciotti, W., Cheney, J.: A formalization of sql with nulls. J. Autom. Reason.
66(4), 989–1030 (nov 2022). https://doi.org/10.1007/s10817-b022-b09632-b4,
https://doi.org/10.1007/s10817-b022-b09632-b4

32. Silva, A., Visser, J.: Strong types for relational databases. In: Proceedings of the
2006 ACM SIGPLAN Workshop on Haskell. p. 25–36. Haskell ’06, Association for
Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/
1159842.1159846, https://doi.org/10.1145/1159842.1159846

https://kysely.dev/
https://github.com/adelsz/pgtyped
https://www.postgresql.org/docs/current/typeconv-overview.html
https://www.postgresql.org/docs/current/typeconv-overview.html
http://www.sqlines.com/online
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.14778/3151113.3151116
https://api.semanticscholar.org/CorpusID:17518212
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
https://doi.org/10.1145/3573926.3573931
https://doi.org/10.1145/3573926.3573931
https://doi.org/10.1145/3573926.3573931
https://ts-sql-query.readthedocs.io/
https://doi.org/10.1145/111197.111212
https://doi.org/10.1145/111197.111212
https://doi.org/10.1145/111197.111212
https://doi.org/10.1145/111197.111212
https://doi.org/10.1145/111197.111212
https://doi.org/10.1145/62678.62700
https://doi.org/10.1145/62678.62700
https://doi.org/10.1145/62678.62700
https://doi.org/10.1145/62678.62700
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2509136.2509536
https://doi.org/10.1145/2509136.2509536
https://doi.org/10.1145/2509136.2509536
https://doi.org/10.1007/s10817-022-09632-4
https://doi.org/10.1007/s10817-022-09632-4
https://doi.org/10.1007/s10817-022-09632-4
https://doi.org/10.1145/1159842.1159846
https://doi.org/10.1145/1159842.1159846
https://doi.org/10.1145/1159842.1159846
https://doi.org/10.1145/1159842.1159846
https://doi.org/10.1145/1159842.1159846

Elucidating Type Conversions in SQL Engines 435

33. Smelcer, J.B.: User errors in database query composition. Int. J. Hum.-Comput.
Stud. 42(4), 353–381 (apr 1995). https://doi.org/10.1006/ijhc.1995.1017,
https://doi.org/10.1006/ijhc.1995.1017

34. Taipalus, T., Grahn, H., Ghanbari, H.: Error messages in relational
database management systems: A comparison of effectiveness, useful-
ness, and user confidence. Journal of Systems and Software 181, 111034
(2021). https://doi.org/https://doi.org/10.1016/j.jss.2021.111034,
https://www.sciencedirect.com/science/article/pii/S016412122100131X

35. Taipalus, T., Siponen, M., Vartiainen, T.: Errors and complications in sql query
formulation. ACM Trans. Comput. Educ. 18(3) (aug 2018). https://doi.org/10.
1145/3231712, https://doi-borg.eproxy.lib.hku.hk/10.1145/3231712

36. Van den Bussche, J., Waller, E.: Polymorphic type inference for the re-
lational algebra. Journal of Computer and System Sciences 64(3), 694–718
(2002). https://doi.org/https://doi.org/10.1006/jcss.2001.1812, https://
www.sciencedirect.com/science/article/pii/S0022000001918124

37. Wadler, P.: Comprehending monads. Mathematical Structures in Computer Sci-
ence 2, 461–493 (1992)

38. Wassermann, G., Gould, C., Su, Z., Devanbu, P.: Static checking of dynamically
generated queries in database applications. ACM Trans. Softw. Eng. Methodol.
16(4), 14–es (sep 2007). https://doi.org/10.1145/1276933.1276935, https://
doi.org/10.1145/1276933.1276935

39. Welty, C.: Correcting user errors in sql. International Journal of Man-Machine
Studies 22(4), 463–477 (1985)

Open Access. This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution, and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1006/ijhc.1995.1017
https://doi.org/10.1006/ijhc.1995.1017
https://doi.org/10.1006/ijhc.1995.1017
https://doi.org/https://doi.org/10.1016/j.jss.2021.111034
https://doi.org/https://doi.org/10.1016/j.jss.2021.111034
https://www.sciencedirect.com/science/article/pii/S016412122100131X
https://doi.org/10.1145/3231712
https://doi.org/10.1145/3231712
https://doi.org/10.1145/3231712
https://doi.org/10.1145/3231712
https://doi-org.eproxy.lib.hku.hk/10.1145/3231712
https://doi.org/https://doi.org/10.1006/jcss.2001.1812
https://doi.org/https://doi.org/10.1006/jcss.2001.1812
https://www.sciencedirect.com/science/article/pii/S0022000001918124
https://www.sciencedirect.com/science/article/pii/S0022000001918124
https://doi.org/10.1145/1276933.1276935
https://doi.org/10.1145/1276933.1276935
https://doi.org/10.1145/1276933.1276935
https://doi.org/10.1145/1276933.1276935
http://creativecommons.org/licenses/by/4.0/

	Elucidating Type Conversions in SQL Engines

